TECHNICAL SPECIFICATION

Midgard L2: Scaling Cardano
with Optimistic Rollups

P
@FluidTokens A ANASTASIA LABS



Midgard L2: Scaling Cardano with Optimistic Rollups

Philip DiSarro Jonathan Rodriguez George Flerovsky
Anastasia Labs Anastasia Labs
info@anastasialabs.com

Abstract

Midgard is the first optimistic rollup protocol on Cardano. It offloads transaction process-
ing from Layer 1 (L1) to Layer 2 (L2) while maintaining L1’s security and decentralization
properties for those transactions. As a result, it can handle a significantly higher volume
of transactions without compromising on security.

This whitepaper outlines the interactions between L1 and L2, the role of operators and
watchers, and the processes for managing state transitions and resolving disputes. The
optimistic rollup model implemented in Midgard represents a significant advancement
in the scalability and security of general-purpose Layer 2 solutions on Cardano.

We discuss the economic incentives that ensure the protocol’s integrity and efficiency.
Operators guarantee the validity of their committed blocks by posting bonds, which are
slashable if the blocks are proven invalid. Members of the public are incentivized to
watch the operators’ blocks, and they are rewarded with a portion of the slashed bonds
when their fraud proofs prevent invalid blocks from merging into Midgard’s confirmed
state.

Midgard’s architecture leverages a family of smart contracts on Cardano’s L1 to manage
state transitions and enforce the security of the L2 operations. Key components include a
robust operator management system, efficient storage for transaction blocks committed
from the L2, and a comprehensive mechanism for submitting and validating fraud
proofs. Overall, Midgard’s design aims to provide a scalable and secure solution for the
growing needs of the Cardano ecosystem.
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Introduction

Midgard is a Layer 2 (L2) scaling solution for the Cardano blockchain. It employs optimistic
rollup technology to enhance Cardano’s capacity to process transactions and host more complex
applications, delivering a richer user experience at a more competitive cost. As Cardano continues
to grow in usage and demand, scaling solutions like Midgard are critical for maintaining high
performance and low transaction costs. This whitepaper describes the architecture and technical
design of the Midgard protocol, detailing how it integrates with Cardano’s Layer 1 (L1) to deliver
secure and efficient transaction processing.

Optimistic rollups process blocks of transactions off-chain and commit those blocks” headers onchain
to the L1 ledger. Each block is committed by a Midgard operator who guarantees the block’s validity.
The block then waits in a queue for at least a fixed duration to be merged into the confirmed state
of the optimistic rollup on L1. The operator must collateralize their guarantee with a bond deposit
and publish the full contents of the block on the publicly accessible data availability (DA) layer.

While a committed block is queued, anyone can inspect its contents on the data availability layer
and ascertain whether it is valid. If someone detects that the block is invalid, they can submit a
fraud proof to prevent it from being merged into the confirmed state, slash the operator’s bond,
and receive a portion of the forfeited bond as a reward. Thus, an optimistic rollup can process a
large number of transactions offchain while maintaining security and finality properties that are
similar to transactions processed directly onchain, as long as:

* The bond requirement for the rollup’s operators is large enough to discourage fraud.

* The reward for preventing an invalid block from merging is large enough to encourage public
vigilance in watching the operators.

* The waiting period for committed blocks is long enough to allow the watchers to detect and
prove fraud before those blocks are merged.

* The data availability layer is accessible by anyone who wishes to inspect the rollup blocks at
any time that they wish to do so.

Whenever the latter three security parameter values are calibrated to provide a high probability of
invalid blocks being detected and disqualified, the bond requirement is a strong deterrent against
operators attempting fraud. An operator cannot dismiss the forfeited bond as merely a “cost of
doing business” paid to obtain potentially larger revenues from fraud. Whenever an invalid block
is disqualified, it does not affect the confirmed state, so there are no revenues from that fraud to
offset the operator’s forfeited bond.

The main design goal of Midgard is to streamline the processes by which blocks are commit-
ted/merged, fraud is detected, and fraud proofs are verified onchain. Advancing this goal allows
the security parameters to be calibrated to achieve a better balance between security, transaction
throughput, confirmation time, and community participation in committing blocks and detecting
fraud.
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Scalability and efficiency

By processing transactions off-chain and only validating them on-chain when fraud proofs challenge
them, Midgard significantly increases throughput and reduces costs for Cardano transactions. Its
rollup blocks use sparse Merkle trees and compact state representations to enhance the protocol’s
efficiency further, enabling it to handle a large volume of transactions without overburdening the
L1.

The deterministic nature of Cardano transactions allows Midgard fraud proofs to pinpoint the
specific site of a transaction that violated Midgard’s ledger rules, without having to look at any
other parts of that transaction, any other unrelated transactions within the block, or any other
blocks. This keeps fraud proofs and their onchain validation procedures small and efficient, which
reduces the time and cost needed to submit fraud proofs when invalid blocks are detected, which
makes it feasible for a wider group of people to police Midgard’s blocks. In this way, Midgard
significantly reduces fraud proof size relative to optimistic rollups used in Ethereum and other
account-based blockchain ecosystems, where a much larger part of the global blockchain state
needs to be inspected when constructing and verifying a fraud proof.

Censorship resistance and fallback mechanisms

On its own, the optimistic rollup mechanism described above ensures a high-level of assurance
for the validity of block headers committed to the state queue and merged to Midgard’s confirmed
state. However, it does not prevent operators from censoring users’ deposits, withdrawals, and
L2 transactions. Consequently, Midgard’s consensus protocol includes additional smart contract
mechanisms to provide censorship resistance for these events.

Midgard deposits and withdrawals are initiated via L1 smart contracts that assign definite inclusion
times to them. An operator block is invalid if it contains these inclusion times in its event interval but
fails to include the associated deposit or withdrawal events. This ensures that if operators continue
committing blocks to Midgard’s state queue, then they cannot ignore deposit and withdrawal events.

Midgard L2 transaction requests are typically submitted to operators via a publicly accessible API,
and they can be ignored by operators. However, any user can escalate his L2 transaction request by
posting a transaction order on L1. Similar to Midgard deposits and withdrawals, an L1 transaction
order is assigned an inclusion time that guarantees its inclusion in a subsequent valid block.

If Midgard operators stop committing blocks at all to the state queue, then the inclusion times on
their own cannot guarantee that deposits, withdrawals, and L2 transactions will be processed in a
timely manner. However, for this extreme case, Midgard’s consensus protocol includes the escape
hatch mechanism, which temporarily lowers the bond requirement for new operators. This makes
it easier for honest actors to become Midgard operators and start committing blocks to the state
queue. This ensures that user funds cannot be stranded on Midgard even if its current operators
entirely stop committing blocks.

Feedback and contributions welcome!

This document specifies the ledger, onchain contracts, and offchain components of the Midgard
architecture. We detail the roles of users, operators, and watchers, how blocks are committed and
merged on L1, and how fraud proofs are handled.

We invite developers, validators, and the broader community to engage with this document and

offer feedback and contributions to help refine and enhance the protocol.

4
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Chapter 1

Ledger state

Midgard’s L2 ledger consists of a chain of blocks. Each block defines a transition from the previous
block’s set of unspent transaction outputs (utxos) to a new utxo set. Unlike Cardano’s closed-system
L1 ledger, Midgard’s open-system L2 ledger allows block transitions to create and destroy utxos
in response to exogenous events—namely, deposits and withdrawal requests that occur on the L1
ledger. This is in addition to Midgard’s endogenous L2 transactions, which work the same as L1
transactions but with reduced functionality (no staking/governance actions).!

The blocks are stored temporarily on Midgard’s data availability layer and permanently on Midgard’s
archive nodes. The blocks’ headers are committed to Midgard’s L1 state queue data structure to
establish immutability for the blocks’ sequence and contents as part of Midgard’s L1 contract-
based consensus protocol. Block headers have a fixed byte size regardless of how many deposit,
transaction, and withdrawal events are held by their blocks—this size leverage between blocks and
headers is how Midgard multiplies Cardano’s transaction throughput.

Midgard L1 contract-based consensus protocol irreversibly considers a block to be confirmed as
soon as all its predecessors are confirmed and the block’s maturity period has elapsed, as long as no
fraud proofs have been verified on L1 to prove that the block violates one of Midgard’s ledger rules.

The irreversibility of block confirmation allows the L1 representation of confirmed block headers to
be condensed. For instance, it can stop tracking confirmed withdrawal requests after they are paid
out and confirmed deposits after they are absorbed into Midgard’s reserve. It can avoid tracking
any confirmed transactions and only needs to track the last confirmed block’s utxo set, as it is
required to confirm the next block. Finally, it can drop all other header data for the last confirmed
block’s predecessors, as it is implicitly tracked by a chained hash in the last confirmed header and
is not required to confirm the next block.

As a result, Midgard’s 1.1 confirmed state consists of a fixed-byte-size record with selected fields
from the last confirmed block header and a variable-size dataset tracking confirmed withdrawal
requests and deposits until they are processed.

cardano developers concerned about the absence of the “Withdraw 0” action need not worry. Midgard’s ledger rules
permit the “Observe” script purpose defined in CIP-112, which is a more principled replacement for “Withdraw 0” that is
expected to arrive in the next era of Cardano mainnet in 2025.
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1.1 Block

A block consists of a header hash, a header, and a block body:

header_hash : HeaderHash
Block := { header : Header
block_body :  BlockBody

The block body contains the block’s transactions, deposits, and withdrawals, along with the unspent
outputs that result from applying the block’s transition to the previous block’s unspent outputs. The
transactions include both transaction requests (submitted to operators’ mempools) and transaction
orders (submitted as L1 events).

utxos : UtxoSet
BlockBody = transactions : TxSet
a deposits : DepositSet

withdrawals :  WithdrawalSet

Figure 1.1.1 shows how the block’s utxos are derived from the previous block’s utxos by applying
the block’s events. The events are applied in the following order: withdrawals, then transactions
(with transaction orders prioritized over transaction requests), and finally deposits. Failing to
uphold proper ordering of event application will be considered fraud. This ensures transaction
orders (which are costlier) are not marked invalid in favor of transaction requests.

Block transition
[ utxos }

withdrawals »transactions deposits

[ prev_utxos }
Figure 1.1.1: A block’s transition from a previous block’s utxo set to a new utxo set.

The block is what gets serialized and stored on Midgard’s data availability layer. During serialization,
each of the block body’s sets is serialized as a sequence of pairs, sorted in ascending order on the
unique key of each element.

However, only the header hash and header are stored on Cardano L1. This is sufficient because the
header specifies Merkle Patricia Trie (MPT) root hashes for each of the sets in the block body. Each
of these root hashes can be verified onchain by streaming over the corresponding set’s elements,
hashing them, and iteratively calculating the root hash.

Figure 1.1.2 shows an example MPT representation of a block’s transactions. The (TxId;, MidgardTx;)
pairs are the data blocks of the tree, which are individually hashed to form the leaves L; of the tree.
The hashes of sibling leaves are concatenated and hashed to form their parent nodes. The nodes
N;j are formed by concatenating and hashing their children’s hashes. The transactions_root is
formed by concatenating and hashing its children’s hashes.

1.1.1 Transaction requests vs. transaction orders

To distinguish between transactions applied to the ledger from different sources, Midgard recognizes
two types of transactions within a block:

Branch: (None) @ 8799ca9 « Commit date: 2025-10-22




(transactions_root: H(Ni, || Nas))

(Maz : H(La || L)) (Nsa : H(Ls || La))

Dq Dy D Dy
(TxIdq, MidgardTxy) (TxIdy, MidgardTx;) (TxIds, MidgardTxs) (TxIdg4, MidgardTxs)

Figure 1.1.2: A Merkle Patricia Trie example for a block’s transactions.

* Transaction requests: Transactions submitted to operators’ mempools. These are the typical
L2 transactions that operators collect from users offchain.

* Transaction orders: Transactions submitted as L1 events through the transaction order
contract (see Section 1.5). These provide an alternative submission path when users need
guaranteed inclusion.

Both transaction requests and transaction orders are included in the block’s transactions set and
share the same transactions_root Merkle root. However, they must be applied to the ledger with
transaction orders prioritized over requests.

1.1.2 Block header

A block header is a record with fixed-size fields: integers, hashes, and fixed-size bytestrings. A block
header hash is 28 bytes in size and calculated via the Blake2b-224.

HeaderHash = Hpgjake2n—224 (Header)

prev_utxos_root : RootHash
utxos_root : RootHash
transactions_root : RootHash
deposits_root : RootHash
withdrawals_root : RootHash
Header := . -
start_time : PosixTime
end_time : PosixTime
prev_header_hash : HeaderHash
operator_vkey : VerificationKey
protocol_version: Int

These header fields are interpreted as follows:
* The *_root fields are the MPT root hashes of the corresponding sets in the block body.

* The prev_utxos_root is a copy of the utxos_root from the previous block, included for
convenience in the fraud proof verification procedures.

* The start_time and end_time fields are the block’s event interval bounds (see Section 3.1).
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* The prev_header_hash field is a hash of the previous block header. For the genesis block, this
field is set to 28 0x00 bytes.

* The operator_vkey field is the cryptographic verification key for signatures of the operator
who committed the block header to the L1 state queue.

* The protocol _version is the Midgard protocol version that applies to this block.

1.2 Utxo set

A utxo set is a finite map from output reference to transaction output:

UtxoSet := Map(OutputRef, Output)
= {(ki : OutputRef, v; : Output) | Vi # j. ki # kj}

An output reference is a tuple that uniquely identifies an output by a hash of the ledger event that
created it (either a transaction or a deposit) and its index among the outputs of that event.

id : TxId
OutputRef := { ! X }

index : Int

An output is a tuple describing a bundle of tokens, data, and a script that have been placed by a
transaction at an address in the ledger:

addr : Address
value: Value

datum : Option(Data)
script :  Option(Script)

Output :=

Within the context of a Midgard block, the utxo set that we are interested in consists of the outputs
created by deposits and transactions but not yet spent by transactions and withdrawals, considering
all the deposits, transactions, and withdrawals of this block and all its predecessors. This is the utxo
set that we transform into an MPT and place into the block body’s utxo field.

o | Midgard requires all L2 datums to be inline.

TODO

o | Midgard uses a different network ID for L2 utxos’ addresses.

TODO
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1.3 Deposit event
A deposit set is a finite map from deposit IDs to deposit info:

DepositSet := Map(Depositld, DepositInfo)
= {(ki : Depositld, v; : Depositinfo) | Vi # j. ki # kj}

A deposit event in a Midgard block acknowledges that a user has created an L1 utxo at the Midgard
L1 deposit address, intending to transfer that utxo’s tokens to the L2 ledger.

DepositEvent := (Depositld, DepositInfo)
Depositld := OutputRef

I2_address : Address }

D itinfo :=
epositinto { [2_.datum :  Option(Data)

The deposit ID corresponds to one of the inputs spent by the user in the L1 transaction that created
the L1 deposit utxo. This identifier is needed to find the L1 deposit utxo, ensure that deposit events
are unique, and detect when an operator has fabricated a deposit event without the corresponding
deposit utxo existing in the L1 ledger.

Suppose a deposit event is permitted by Midgard’s ledger rules to be included in a block. In that
case, its effect is to add a new L2 utxo to the block’s utxo set containing the value from the L1 deposit
utxo at the address (12_address) and with the inline datum (12 _datum) specified by the user. The
L2 output reference of this new utxo is as follows:

id = hash(deposit.id
12_outref(deposit_id) ::{ :ndex = Oas (deposit.id) }

In other words, the L2 ledger treats the new utxo as if it was created by a notional transaction with
TxId equal to the hash of the deposit ID.

If the block containing the deposit event is confirmed, the corresponding L.1 deposit utxo may be
absorbed into the Midgard reserve. Section 2.1 describes the lifecycle of a deposit in further detail,
including how the deposit event information is validated.

1.4 Withdrawal event
A withdrawal set is a finite map from withdrawal ID to withdrawal info:

WithdrawalSet := Map(Withdrawalld, WithdrawalInfo)
= {(ki : Withdrawalld, v; : Withdrawallnfo) | Vi # j. k; # kj}

A withdrawal event in a Midgard block acknowledges that a user has created an L1 utxo at the
Midgard L1 withdrawal address, requesting the transfer of an L2 utxo’s tokens to the L1 ledger.

WithdrawalEvent := (Withdrawalld, WithdrawalInfo)
Withdrawalld := OutputRef
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[2_outref :  OutputRef
12_value : Value
I1_address : Address
[1_datum: Option(Data)

WithdrawalInfo =

The WithdrawallId of a withdrawal event corresponds to one of the inputs spent by the user in the
L1 transaction that created the L1 withdrawal request utxo (more specifically, it’s the hash of its
serialized output-reference). This key is needed to identify the L1 withdrawal utxo, ensure that
withdrawal events are unique, and detect when an operator has fabricated a withdrawal event
without the corresponding withdrawal request existing in the L1 ledger.

Any withdrawal request must first be sent to the outbox contract on L2 in order to provide a few
guarantees for the L1 order:

1. Consent of owners

2. Since utxos at outbox contract become unspendable via L2 transactions, their persistence in
ledger until the inclusion of their withdrawal events on L1 is guaranteed

3. Quantity of tokens do not exceed the corresponding protocol parameter

With the utxo created at the outbox contract, incentives can be adjusted so that operators will
continue the withdrawal order on L1, and therefore relieve users from providing the min ADA
themselves.

Inclusion of a withdrawal event in a block leads to the removal of the output at output-reference
12 _outref from the block’s utxo set.

Suppose the block containing the withdrawal event is confirmed. The L1 withdrawal request utxo
will be sent to the payout contract, after which it can be gradually funded from the reserve. Once
fully funded, its utxo can be transfered to 11 _address with 11_datum attached.

Section 2.4 describes the lifecycle of a withdrawal request in further detail.

1.5 Transaction Order event
A transaction order set is a finite map from transaction order ID to a Midgard transaction:

TxOrderSet := Map(TxOrderld, MidgardTx)
- {(ki - TxOrderld, v; : MidgardTx) | Vi # j. ki # k,-}

Transaction orders are events on L1 as an alternative to the L2 transaction submission to operators.
Similar to a deposit or withdrawal event, a transaction order in a Midgard block acknowledges that
a user has created an L1 utxo at the Midgard L1 transaction order address, obligating the operator
to include the given L2 transaction. In turn, the operator is free to set MidgardTxValidity, if the
included transaction is invalid. This invalidity claim itself can then be subject to fraud proofs if the
operator had stated incorrectly.

TxOrderEvent := (TxOrderld, MidgardTx)
TxOrderId := OutputRef

10
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The Tx0rderId of a transaction order event corresponds to one of the inputs spent by the user in
the L1 transaction that created the transaction order utxo on L1 (more specifically, it’s the hash of
its serialized output-reference). This key is needed to identify the L1 transaction order utxo, and
ensure that each order is unique.

The effect of an included transaction order on a block’s utxo set is identical to any other transaction
from block’s transaction tree. Meaning it simply should remove all the transaction’s inputs from
the ledger, and add all its outputs.

Section 2.3 describes the lifecycle of a transaction order request in further detail.

1.6 Transaction

A transaction set in Midgard is a finite map from transaction ID to Midgard L2 transaction, where
the ID is also constrained to be the Blake2b-256 hash of the transaction:

TxSet := Map(TxId, MidgardTx)
= {(ki : TxId, v; : MidgardTx) | ki = Hejake2b-256(Vi), Vi # j. ki # k]-}

An L2 transaction in a Midgard block is an endogenous event. Its corresponding utxo set transition
is validated purely based on the information contained in the utxo set. This contrasts with deposit
and withdrawal events, which create and spend utxos (respectively) based on information observed
outside the L2 ledger.

A transaction can only spend a utxo if it satisfies the conditions of the spending validator corre-
sponding to the utxo’s payment address, and it can only mint and burn tokens by satisfying the
conditions of the corresponding minting policies. Of course, users can inject information into the
utxo set via redeemer arguments and output datums set in transactions, but those are still subject
to the transaction scripts’ conditions.

1.6.1 Cardano transaction types

Cardano’s L1 transaction type (Chang 2 hardfork) served as an initial model for Midgard’s L2
transaction type. In the following, field types prefixed by a question mark 7 are set to appropriate
“empty” defaults during deserialization if the serialized transaction omits them:? 3

body : CardanoTxBody

wits : CardanoTxWits
CardanoTx = . .

is_valid : Bool

auxiliary_data : ? TxMetadata

2In this section, we are mainly concerned with comparing Cardano and Midgard’s deserialized data types. Serialization
formats and conversions are addressed in Midgard’s CDDL specifications.

3For simplicity of exposition, we omit the “era” type parameters, effectively coercing them all to the Conway era. We
also simplify the script types.
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spend_inputs : Set(OutputRef)
collateral_inputs : ? Set(OutputRef)
reference_inputs : ? Set(OutputRef)
outputs : [Output]
collateral_return : ? Output
total_collateral : ? Coin
certificates : ? [Set(Certificate)]
withdrawals : ? Map(RewardAccount, Coin)
fee: Coin
CardanoTxBody := { validity_interval : CardanoValidityInterval
required_signer_hashes : ? Set(VKeyHash)
mint : ? Value
script_integrity_hash : ? Hash
auxiliary_data_hash : ? Hash
network_id : ? Network
voting_procedures : ? VotingProcedures
proposal_procedures : ? Set(ProposalProcedure)
current_treasury_value : ? Coin
treasury_donation : ? Coin
addr_tx_wits : ? Set(VKey, Signature, VKeyHash)
boot_addr_tx_wits : ? Set(BootstrapWitness)
CardanoTxWits := { script_tx_wits : ? Map(ScriptHash, CardanoScript)
data_tx_wits : ? TxDats
redeemer_tx_wits : ? Redeemers

CardanoValidityInterval := (Option(Slot), Option(Slot))
CardanoScript := TimelockScript(Timelock)
| PlutusScript(CardanoPlutusVersion, PlutusBinary)
CardanoPlutusVersion := PlutusV1
| PlutusVv2
| PlutusVv3

1.6.2 Deviations from the Cardano transaction types
Midgard’s transaction types deviate from Cardano’s in the following ways:

No staking or governance actions. Midgard’s consensus protocol is not based on Ouroboros
proof-of-stake, and its governance protocol is not based on Cardano’s hard-fork-combinator
update mechanism. Furthermore, Midgard’s L1 scripts cannot authorize arbitrary staking or
governance actions on behalf of users. For this reason, staking and governance actions are
prohibited in Midgard L2 transactions.

No pre-Conway features. Midgard does not need to maintain backwards compatibility with
pre-Conway eras. Midgard deposits and transactions will be prohibited from using bootstrap
addresses, and Shelley addresses with Plutus versions older than Plutus V3. Public key hash
credentials, native scripts, and Plutus scripts at or above V3 are allowed.

No transaction metadata. Midgard prohibits using metadata in L2 transactions but allows
users to set the auxiliary data hash to any arbitrary hash, which Midgard’s ledger’s rules
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do not require to match the empty transaction metadata field. This preserves users’ ability to
pin metadata content via a hash in Midgard’s ledger, but they are expected to store the actual
metadata offchain.

No datum hashes in outputs. Midgard requires all utxo datums to be inline, which avoids the
need to index the datum-hash to datum map from transactions’ datum witnesses.

CIPs 112 and 128. Midgard has adopted CIP-112 and CIP 128 ahead of Cardano mainnet, which
we expect to merge them in 2025. CIP-112 provides a new “Observe” script purpose, a more
principled and streamlined alternative to the “Withdraw 0” trick widely used by most Cardano
dApps. It also allows native scripts to conditionally forward their logic to an observer script.
On the other hand, CIP-128 will significantly improve the execution efficiency achievable
in Plutus contracts by preserving the order of inputs in a submitted transaction (instead of
ordering them by OutputRef).

Different network ID. Midgard transactions and utxo addresses use a different network ID to
distinguish them from their Cardano mainnet counterparts. Furthermore, we are considering
a prefix to minting policy IDs to distinguish tokens deposited from L1 from tokens minted on
L2.

Replace slots with POSIX timestamps. Midgard’s consensus protocol does not use slots like
Ouroboros. Furthermore, the L1 contracts that enforce Midgard’s consensus protocol are
evaluated in the Plutus script context, where slots are converted to Posix timestamps. For
these reasons, Midgard uses POSIX timestamps instead of slots in L2 transactions.

IsValid tag is always True. Midgard’s consensus protocol does not use the IsValid tag, so it is
always set to True.

1.6.3 Midgard simplified transaction types

Midgard’s actual transaction types are complicated by the need to optimize their traversal by Plutus
scripts. As an intermediate step towards them, the following simplified types illustrate how the
Cardano transaction types (Section 1.6.1) are modified by Midgard’s deviations (Section 1.6.2). We
use the empty set symbol @ to indicate fields required to be empty in Midgard transactions and use
the star symbol x to indicate new or modified fields:

body : MidgardSTxBody
its : Mi TXWi
MidgardsTx := { "' ° idgardSTxWits
is_valid : Bool
@ auxiliary_data:  ? TxMetadata
13
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spend_inputs : Set(OutputRef)
@ collateral_inputs : ? Set(OutputRef)
reference_inputs : ? Set(OutputRef)
outputs : [Output]
@ collateral_return : ? Output
@ total_collateral : ? Coin
@ certificates : ? [Set(Certificate)]
@ withdrawals : ? Map(RewardAccount, Coin)
fee: Coin
MidgardSTxBody := * valid?ty,interval : ? Midg'jardSVaIidi'tyIntervaI
* required_observers : ? [ScriptCredential]
required_signer_hashes : ? [VKeyCredential]
mint : ? Value
script_integrity_hash : ? Hash
auxiliary_data_hash : ? Hash
network_id : ? Network
@ voting_procedures : ? VotingProcedures
@ proposal_procedures : ? Set(ProposalProcedure)
@ current_treasury_value : ? Coin
@ treasury_donation : ? Coin
addr_tx_wits : ? Set(VKey, Signature, VKeyHash)
@ boot_addr_tx_wits : ? Set(BootstrapWitness)
MidgardSTxWits := { script_tx_wits : ? Map(ScriptHash, MidgardSScript)
@ data_tx_wits : ? TxDats
redeemer_tx_wits : ? Redeemers

MidgardSValidityInterval :
MidgardSScript := TimelockScript(* TimelockObserver)

(Option(PosixTime), Option(PosixTime))

| PlutusScript(MidgardSPlutusVersion, PlutusBinary)
MidgardSPlutusVersion := PlutusV3

1.6.4 Midgard transaction types

Midgard’s transaction types modify the above simplified types by replacing all variable-length
fields with hashes (indicated by the letter / below). The data availability layer is responsible for
confirming that the hashes correspond to their preimages, and DA fraud proofs can be submitted if
this correspondence is violated.

body:  H(MidgardTxBody)
MidgardTx = { wits : H (MidgardTxWits)
validity : MidgardTxValidity
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spend_inputs :
reference_inputs :
outputs :

fee:
validity_interval :

MidgardTxBody : required_observers

MidgardTxWits : script_tx_wits :

redeemer_tx_wits :

MidgardTxValidity := TxIsValid
| NonExistentInputUtxo
| InvalidSignature
| FailedScript
| FeeTooLow
| UnbalancedTx
| etc.(TODO)

1.7 Confirmed state

required_signer_hashes : ? H([VKeyCredential])

H ([OutputRef])
? H ([OutputRef])
H ([Output])
Coin
? MidgardSValidityInterval
: ? H ([ScriptCredential])

mint : ? Value

script.integrity_hash : ? Hash

auxiliary_data_hash : ? Hash

network_id : ? Network

addr_tx_wits : ? H (Set(VKey, Signature, VKeyHash))

? H(Map(ScriptHash, MidgardSScript))
? H (Redeemers)

When a Midgard block becomes confirmed, a selection of its block header fields is split into two
groups (discarding the rest). These groups are used to populate the fields of two record types in

Midgard’s confirmed state:

header_hash : HeaderHash
prev_header_hash : HeaderHash
ConfirmedState := utxo,réot : MPTR )
start_time : PosixTime
end_time : PosixTime
protocol_version:  Int
deposit_root : MPTR
withdraw_root : MPTR
Settlement := { start_time: PosixTime
end_time : PosixTime

. . time :
ResolutionClaim : {

operator :

resolution_claim : Option(ResolutionClaim)

PosixTime
VerificationKey
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At genesis, ConfirmedState is set as follows:

header_hash := 0
prev_header_hash := 0
genesisConfirmedState := utxo-root := MPTRempry
start_time = system_start
end_time = system_start
protocol_version .= 0

Midgard only stores the latest confirmed block’s ConfirmedState on L1, always overwriting the
previous one. By contrast, its Settlement never overwrites that of the previous block. Instead,
the Settlement spins into a separate settlement node that users and operators can reference to
process deposits and withdrawal requests.

The current operator can optimistically attach a resolution claim to any settlement node, indicating
that all deposits and withdrawals in the node have been processed and that the node will be
removed from the settlement queue at a given resolution time. The resolution time is set to the
claim’s attachment time, shifted forward by Midgard’s maturity_duration protocol parameter, in
order to provide an opportunity fraud proofs to be verified on L1 that disprove the operator’s claim
that the settlement node is resolved. The operator is slashed if their claim is disproved; otherwise,
starting from the resolution time, the operator can remove the settlement node and recover its
min-ADA and some fees for processing the deposits/withdrawals.
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Chapter 2

User event protocol

The user event protocol controls how users interact with Midgard. It consists of three L1-based
interactions and one L2-based interaction.

2.1 Deposit (L1)

A user deposits funds into Midgard by submitting an L1 transaction that performs the following:
1. Spend an input 11 _nonce, which uniquely identifies this deposit transaction.

2. Register a staking script credential to witness the deposit. The script is parametrized by
12_id (which is Blake2b256 hash of 11 nonce), and the credential’s purpose is to disprove
the existence of the deposit whenever the credential is not registered.

3. Total count of tokens in the deposit must not exceed max _transfer token count, a Midgard
protocol pararmeter.

4. Mint a deposit auth token to verify the following datum:

event : DepositEvent,
inclusion_time :  PosixTime,
DepositDatum = { witness : ScriptHash,

refund_address : Address,
refund_datum:  Option(Data)

5. Send the user’s deposited funds to the Midgard deposit address, along with the deposit auth
token and the above datum.

At the time of the L1 deposit transaction, the deposit’s inclusion_time is set to the sum of the trans-
action’s validity interval upper bound and the event _wait_duration Midgard protocol parameter.
According to Midgard’s ledger rules:

Deposit inclusion. A block header must include deposit events with inclusion times falling
within the block header’s event interval, and it must not include any other deposit events.

Lcardano’s ledger lacks a more direct method to disprove the existence of a utxo to a Plutus script.
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Furthermore, the state queue enforces that event intervals are adjacent and non-overlapping.
Therefore, while operators continue committing valid block headers, every deposit is eventually
included in the state queue.

On the other hand, suppose a fraud proof is verified on L1 to prove that a block header in the state
queue has violated the deposit inclusion rule. When this block header and all its descendants are
removed, the state queue enforces that the next committed block header’s event interval must
contain all of those removed block headers’ event intervals. Therefore, Midgard’s ledger rules
require this new block header to include all deposit events that should have been included in the
removed block headers.

The deposit’s outcome is determined as follows:

o If the deposit event is included in a settlement queue node, then the deposit utxo can be
absorbed into the Midgard reserve.

* If the deposit’s inclusion time is within the confirmed header’s event interval but not within
the event interval of any settlement queue node, then the deposit utxo can be refunded to its
user according to the refund address and refund _datum fields.

The deposit’s witness staking credential must be deregistered when the deposit utxo is spent.

2.1.1 Minting policy

The deposit minting policy is statically parametrized on the hub_oracle minting policy. It oversees
correctness of datums, and registration/unregistration of events’ corresponding witness staking
scripts.

Authenticate Deposit. Properly record a new deposit event from L1 to L2. Conditions:

1. Let 11 _nonce be the output reference of a utxo on L1 that is spent in the deposit transac-
tion.

2. Let 12_id be the Blake2b256 hash of serialized 11 _nonce.

3. An NFT with own policy ID and asset name of 12_id must be minted and included in the
deposit utxo.

4. The witness staking script, instantiated with 12_id must be registered in the transaction.

5. The redeemer used for registering the witness script must be equal to the deposit policy
ID.

6. Let deposit_addr be the address of the deposit contract from Midgard’s hub oracle.
7. Deposit utxo must be produced at deposit_addr.

8. Total number of deposited tokens (including ADA) must not exceed max_tokens_al-
lowed_in_deposits, a protocol parameter.

9. Recorded 11 nonce in the deposit event must be correct.

10. The deposit’s inclusion_time must be equal to transaction’s time-validity upper bound
plus event_wait_duration Midgard protocol parameter.
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11.

The hash of the witness script must be correctly stored in the deposit datum.

Burn Deposit NFT. Oversee conclusion of a deposit event (i.e. either its transfer to reserve or
its refund) by requiring its NFTs to be burnt. Conditions:

1.

2.

Let 12_id be the corresponding ID of the target deposit event, provided via the redeemer.

An NFT with own policy ID and asset name of 12_id must be burnt.

. The witness staking script, instantiated with 12_id must be unregistered in the transac-

tion.

. The redeemer used for unregistering the witness script must be correct. Namely, it must

be equal to the deposit policy ID.

2.1.2 Spending validator

The deposit spending validator is statically parametrized on the hub_oracle minting policy. It’s
responsible for concluding deposits, whether for transfering them to Midgard reserve, or refunding
stranded deposits.

Transfer to Reserve. Transaction for moving funds of finalized deposit events into Midgard
reserve. Conditions:

1.

2.

6.

Let settlement_node be the referenced settlement node.

The deposit must be included in the deposit tree of settlement _node. This also implies
the inclusion time of the deposit falls within the time interval of settlement _node.

Let reserve_addr be the address of the Midgard reserve retrieved from hub oracle.

The utxo produced at reserve_addr must contain all the tokens from the deposit utxo,
except for the deposit NFT.

The BurnEventNFT endpoint of the deposit minting script must be invoked with the
corresponding 12_id of the deposit utxo.

No datum and no reference script must be attached to the reserve utxo.

Refund. Conditions:

1.

4.

The BurnEventNFT endpoint of the deposit minting script must be invoked with the
corresponding 12_id of the deposit utxo.

. All the tokens included in the deposit utxo (except for the deposit NFT) must go to the

refund_address specified in the deposit datum.

. The datum attached to the produced utxo must also match the one stated in deposit

datum.

* Ifinclusion time of the stranded deposit falls within the time range of an existing
settlement node, refund can only be allowed if the settlement node’s corresponding
tree does not contain the deposit (proven by providing a non-membership proof).

» Otherwise, if the inclusion time falls in one of the time gaps of settlement queue,
refund request is considered valid by referencing the immediate settlement node
and showing the inclusion time falls in the gap.
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2.2 Transaction request (L2)

A user’s primary method of transacting on the Midgard ledger is to submit an L2 transaction directly
to the current operator via a web-based API endpoint. Operators are expected to serve such APIs in
a publicly accessible and employ sufficient security techniques to mitigate denial-of-service.

Users’ L2 transactions follow the data structure defined in Section 1.6.4. In particular, users can
freely set transaction time-validity intervals according to their preferences. As long as there is a
non-empty overlap between a transaction’s time-validity interval and a block’s event interval, the
transaction can be included in the block. Since event intervals are adjacent to each other; a user’s
valid transaction request can only miss the ledger in two cases:

* The operator censors it (see mitigation in Section 2.3).

* The operator commits the last block overlapping with the transaction before receiving the
transaction request.’

By contrast, L1 transactions on Cardano can fail in several other time-related ways. Ouroboros
blocks only occupy every 20th one-second slot on average and have limited transaction capacity.
This means that users often have to set longer transaction validity intervals than they want and
wait for many block confirmations of their tx before relying on its outcomes.

However, while on Cardano L1 two transactions with non-overlapping validity intervals cannot
be included in the same block, the analogous L2 transactions can be included in a Midgard block
if its event interval overlaps each transaction. Thus, transaction validity intervals on Midgard
define only the relation between transactions and blocks but do not necessarily imply a temporal
precedence relation between transactions.

o | Which other information should we include here for L2 transaction requests?

ZNote that this case does not preclude transactions with short time-validity intervals from succeeding. For example,
a transaction post-dated a couple of minutes in the future can still be included in a block even if its validity interval’s
duration is one millisecond.
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2.3 Transaction order (L1)

A user who wants to mitigate the risk of censorship by the current operator can submit an L2
transaction as an L1 transaction order. A transaction order is created by an L1 transaction that
performs the following:

1. Spend an input 11 _nonce, which uniquely identifies this transaction order.

2. Register a staking script credential to witness the transaction order. The staking script is
parametrized by 11 nonce, and the credential’s purpose is to disprove the existence of the
transaction order whenever the credential is not registered.

3. Mint a transaction order token to verify the following datum:

event : TxOrderEvent,
inclusion_time :  PosixTime,
TxOrderDatum := { witness : ScriptHash,

refund_address : Address,
refund_datum:  Option(Data)

4. Send min-ADA to the Midgard transaction order address, along with the transaction order
token and the above datum.

At the time of the L1 transaction order, its inclusion_time is set to the sum of the L1 transac-
tion’s validity interval upper bound and the event wait_duration Midgard protocol parameter.
According to Midgard’s ledger rules:

Transaction order inclusion. A block header must include transaction orders with inclusion
times falling within the block header’s event interval, and it must not include any other
transaction orders.

The transaction order’s inclusion_time must be within its L2 transaction’s time-
validity interval. This is guaranteed optimistically via the validity field of the un-
derlying MidgardTx.

Analogously to deposits and withdrawals, transaction orders will eventually be included in the
state queue, as long as operators continue committing valid block headers. Furthermore, if any
blocks are removed from the state queue, any new committed block must include the transaction
orders that should have been included in the removed blocks.

The transaction order fulfills its purpose when its inclusion time is within the confirmed header’s
event interval. Whether or not the outcome of the order’s L2 transaction was merged into the
confirmed state, nothing more can be achieved with the transaction order; and it can be refunded
according to the refund _address and refund _datum.

The transaction order’s witness staking credential must be deregistered when the order utxo is
spent.
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2.3.1 Minting policy

The tx_order minting policy is statically parametrized on the hub_oracle minting policy. It oversees
correctness of datums, and registration/unregistration of events’ corresponding witness staking

scripts.

Authenticate Order. Properly record a new L2 transaction order order event on L1. Conditions:

1.

2.

9.

Let 11 _nonce be the output reference of a utxo on L1 that is spent in the order transaction.

Let 11_id be the Blake2b256 hash of serialized 11 _nonce.

. An NFT with own policy ID and asset name of 11_id must be minted and included in the

transaction order utxo.

. The witness staking script, instantiated with 11_id must be registered in the transaction.

. The redeemer used for registering the witness script must be equal to the tx_order

policy ID.

. Let tx_order_addr be the address of the transaction order contract from Midgard’s hub

oracle.

. Transaction order utxo must be produced at tx_order_addr.

. The transaction order’s inclusion_time must be equal to transaction’s time-validity

upper bound plus event _wait_duration Midgard protocol parameter.

The hash of the witness script must be correctly stored in the datum.

Burn Transaction Order NFT. Oversee the conclusion of transaction order by requiring its
NFTs to be burnt. Conditions:

1.

Let 11_id be the corresponding ID of the target transaction order, provided via the
redeemer.

. An NFT with own policy ID and asset name of 11_id must be burnt.

. The witness staking script, instantiated with 11_id must be unregistered in the transac-

tion.

. The redeemer used for unregistrering the witness script must be correct. Namely, it

must be equal to the tx_order policy ID.
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2.3.2 Spending validator

The tx_order spending validator is statically parametrized on the hub_oracle minting policy. It’s
responsible for validating conclusion of transaction orders, or refunding stranded ones.

Conclude. Transaction for spending a confirmed transaction order. Conditions:

1.

2.

6.

7.

Let settlement_node be the referenced settlement node.

The transaction order must be included in the transactions tree of settlement_node.
This also implies the inclusion time of the order falls within the time interval of settle-
ment_node.

. The BurnEventNFT endpoint of the transaction order minting script must be invoked

with the corresponding 11_id of the order utxo.

. Let refund_address and refund_datum be the refund information retrieved from the

transaction order’s datum.

. The min-ADA of the transaction order utxo must go to refund_address.

The datum attached to this output utxo must be the same as refund_datum. TODO

No reference script must be attached to the output utxo.

Refund. Conditions:

1.

3.

The BurnEventNFT endpoint of the transaction order minting script must be invoked
with the corresponding 11_id of the order utxo.

. Let refund_address and refund_datum be the refund information retrieved from the

transaction order’s datum.

. The min-ADA of the transaction order utxo must go to refund_address.

. The datum attached to this output utxo must be the same as refund_datum.

 Ifinclusion time of the stranded transaction order falls within the time range of
an existing settlement node, refund can only be allowed if the settlement node’s
corresponding tree does not contain the transaction order (proven by providing a
non-membership proof).

» Otherwise, if the inclusion time falls in one of the time gaps of settlement queue,
refund request is considered valid by referencing the immediate settlement node
and showing the inclusion time falls in the gap.
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2.4 Withdrawal order (L.1)

A user initiates a withdrawal from Midgard by first producing an authentic token at the outbox
contract on L2. This ensures two things:

1. The utxo becomes unspendable on L2, until its corresponding withdrawal event removes it
from ledger.

2. The number of tokens included for withdrawal does not exceed the max_tokens_allowed
protocol parameter.

To actually bring the funds to L1, users must then submit an L1 transaction that performs the
following:

1. Spend an input 11 _nonce, which uniquely identifies this withdrawal order.

2. Register a staking script credential to witness the withdrawal order. The staking script
is parametrized by 11_id (which is simply the hash of the serialized 11 nonce), and the
credential’s purpose is to disprove the existence of the withdrawal order whenever the
credential is not registered.

3. Mint a withdrawal order token to verify the following datum:

event : WithdrawalEvent,
inclusion_time :  PosixTime,
WithdrawalOrderDatum := { witness : ScriptHash,

refund_address : Address,
refund_datum :  Option(Data)

4. Send min-ADA to the Midgard withdrawal order address, along with the withdrawal order
token and the above datum.

We could adapt Midgard’s incentive structure to encourage operators to perform this
second step on L1 on behalf of users, relieving users from this chore during normal
protocol operation.

At the time of the L1 withdrawal order, its inclusion_time is set to the sum of the L1 transac-
tion’s validity interval upper bound and the event wait_duration Midgard protocol parameter.
According to Midgard’s ledger rules:

Withdrawal order inclusion. A block header must include withdrawal orders with inclusion
times falling within the block header’s event interval, and it must not include any other
withdrawal orders.

The withdrawal order’s outcome is determined as follows:

+ If the withdrawal event is included in a settlement queue node, its utxo can be transferred to
the payout contract so that it can be funded from the Midgard reserve.

* If the withdrawal order’s inclusion time is within the confirmed header’s event interval but
not within the event interval of any settlement queue node, then the withdrawal order utxo
can be refunded to its user according to the refund address and refund_datum fields.

The withdrawal order’s witness staking credential must be deregistered when the withdrawal

order utxo is spent.
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2.4.1 Minting policy

The withdrawal minting policy is statically parametrized on the hub_oracle minting policy. It
oversees correctness of datums, and registration/unregistration of events’ corresponding witness
staking scripts.

Authenticate Withdrawal. Properly record a new withdrawal order event from L2 to L1. Con-
ditions:

1.

2.

10.

11.

12.

13.

14.

15.

Let 11 _nonce be the output reference of a utxo on L1 that is spent in the order transaction.

Let 11_id be the Blake2b256 hash of serialized 11 _nonce.

. An NFT with own policy ID and asset name of 11_id must be minted and included in the

withdrawal order utxo.

. The witness staking script, instantiated with 11_id must be registered in the transaction.

. The redeemer used for registering the witness script must be equal to the withdrawal

policy ID.

. Let withdrawal _addr be the address of the withdrawal contract from Midgard’s hub

oracle.

. Withdrawal order utxo must be produced at withdrawal addr.

. The withdrawal order’s inclusion_time must be equal to transaction’s time-validity

upper bound plus event_wait_duration Midgard protocol parameter.

. The hash of the witness script must be correctly stored in the withdrawal datum.

Let utxos_root be the root of the latest ledger at the latest node of the state queue, and
12 _outref be the output reference of the utxo subject to withdrawal.

Let 12_output be the utxo itself at outbox contract on L2, provided via the redeemer.
utxos_root must contain an item with key 12_outref and value 12_output.

Let 12 _value be the recorded value on L2 stored in WithdrawalInfo.

12 _value and value from 12_output must be equal.

Address from 12_output must be the same as outbox contract’s on L2.

Burn Withdrawal NFT. Oversee start of the funding for a withdrawal order by requiring its
NFTs to be burnt, and having the utxo reproduced at the payout contract. Conditions:

1.

Let 11 _id be the corresponding ID of the target withdrawal order, provided via the
redeemer.

. An NFT with own policy ID and asset name of 11_id must be burnt.

. The witness staking script, instantiated with 11_id must be unregistered in the transac-

tion.

. The redeemer used for unregistering the witness script must be correct. Namely, it must

be equal to the withdrawal policy ID.
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2.4.2 Spending validator

The withdrawal spending validator is statically parametrized on the hub_oracle minting policy.
It’s responsible for initializing the funding phase of a withdrawal order by reproducing its utxo at
the payout contract, or refunding stranded withdrawal orders.

Initialize Payout. Transaction for reproducing the order at the payout contract to be filled up
from the Midgard reserve. Conditions:

1.

2.

8.

Let settlement_node be the referenced settlement node.

The withdrawal order must be included in the withdrawal tree of settlement_node. This
also implies the inclusion time of the order falls within the time interval of settlement -
node.

. Let payout_addr be the address of the intermediary payout contract retrieved from hub

oracle.

The utxo produced at payout_addr must have the same value as the withdrawal order
utxo, without the withdrawal NFT, and with the payout NFT (same asset name) added.

The BurnEventNFT endpoint of the withdrawal minting script must be invoked with the
corresponding 11_id of the withdrawal utxo.

. The minting logic from payout must be invoked, minting an NFT with the same asset

name as the withdrawal NFT being burnt in the transaction.

The datum attached to the payout accumulator utxo must hand over 12 value, 11_-
address and 11 _datum unchanged.

No reference script must be attached to the payout accumulator utxo.

Refund. Conditions:

1.

2.

3.

4.

The BurnEventNFT endpoint of the withdrawal minting script must be invoked with the
corresponding 11_id of the withdrawal order utxo.

The min-ADA included in the withdrawal order utxo must go to the refund_address
specified in the withdrawal datum.

The datum attached to the produced utxo must also match the one stated in withdrawal
datum.

 If inclusion time of the stranded withdrawal falls within the time range of an
existing settlement node, refund can only be allowed if the settlement node’s
corresponding tree does not contain the withdrawal (proven by providing a non-
membership proof).

» Otherwise, if the inclusion time falls in one of the time gaps of settlement queue,
refund request is considered valid by referencing the immediate settlement node
and showing the inclusion time falls in the gap.
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2.5 Witness Staking Script
A generic staking script on L1, parameterized by the unique identifier of a user event, whose
registration state can be used to prove a falsely stated user event has not happened.
There are 3 logical endpoints this script needs to support:
1. Validating registration for an authentic user event.
2. Validating unregistration for the conclusion of a previously registered user event.

3. Allowing an isolated registration that is immediately followed by an unregistration in the
same transaction.® Essentially proving the unregistered state of the staking script, without
changing its state.

2.5.1 Staking script

The witness script is parameterized by the unique ID of a corresponding user event (deposit,
withdrawal, or transaction order). Let event_id be this identifier, which is the Blake2b256 hash of
an L1 nonce output-reference spent in the user event’s first transaction.

Mint or Burn. Script invocation to be included in the first transaction of a user event. Condi-
tions:

1. Let target_policy be the policy ID of the user event NFT, accessed via the redeemer.

2. Registration/unregistration of this witness script is respectively tied to the target -
policy’s mint/burn logic.

* Registration is allowed if a user event NFT with asset name of event_id is minted.
* Unregistration is allowed if a user event NFT with asset name of event_id is burnt.

Register to Prove Not Registered. Redeemer for proving the unregistered state of the witness
script instance. Conditions:

1. Let redeemer_index be the positional index of the current redeemer (RegisterCreden-
tial certificate) within the redeemers field of the transaction.

2. The redeemer pair that comes after redeemer_index must be of the same credential
under an UnregisterCredential certificate.

3. Redeemer data of this following redeemer must be a UnregisterToProveNotRegis—
tered, such that the index it carries is equal to redeemer_index.

Unregister to Prove Not Registered. Redeemer to follow RegisterToProveNotRegistered.
Conditions:

1. Let redeemer_index be the positional index of the RegisterToProveNotRegistered
redeemer (RegisterCredential certificate) within the redeemers field of the transac-
tion.

2. Current certificate must be an UnregisterCredential, and its underlying credential
must be equal to the one retrieved using redeemer_index.

3. Redeemer data at redeemer_index must be a RegisterToProveNotRegistered, such
that the index it carries is equal to redeemer_index.

3This is possible because Cardano ledger allows custom ordering of publish redeemers (TODO?).
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Chapter 3

Consensus protocol

This chapter describes Midgard’s L1 contract-based consensus protocol, which establishes the
canonical chain of valid blocks. It consists of the following components:

The operator directory is an onchain data structure that tracks active, retired, and newly
registered Midgard operators.

The scheduler is an onchain mechanism that assigns evenly sized time windows to operators
on a rotating schedule.

The state queue is an onchain data structure that holds operators’ committed block headers
until they are merged into the confirmed state or disqualified by fraud proofs.

When operators aren’t committing blocks for a long time, the escape-hatch mechanism
temporarily lowers the bond requirement for new operators.

Computation threads facilitate the onchain validation of submitted fraud proofs, splitting it
up into steps that fit within Cardano’s limits on transaction size, computation, and memory.

The fraud proof catalogue defines the universe of fraud proof verification procedures for
which computation threads can be spawned to target a block header in the state queue.

A fraud proof token indicates that a computation thread has successfully concluded to verify
a fraud proof about a block header in the state queue.

The Midgard hub oracle wires all the onchain components together by storing their minting
policy IDs and spending validator addresses for easy reference.
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3.1 Time model

Midgard partitions time in two different ways:

Operator shifts. Predefined, non-overlapping time intervals assigned to operators by the Midgard
scheduler. Each operator has the exclusive privilege to commit blocks to the state queue and
resolve nodes in the settlement queue during their assigned shifts. If an operator fails to
commit blocks regularly in their shift, the next operator can take over.

Event intervals. Emergent, non-overlapping time intervals claimed by operators’ committed
blocks. Each operator block is expected to include all user events with inclusion times within
its event interval and to exclude all other user events. For L1 user events (deposits, transaction
orders, withdrawal orders), this is enforced by Midgard’s ledger rules.

Operator shifts are evenly sized according to the shift_duration Midgard protocol parameter. The
scheduler assigns operators to shifts by iterating over the list of active operators in key-descending
order, allowing new operators into the list at the end of each cycle. The state queue enforces this
schedule by requiring the time-validity upper bound of every block commitment transaction to fall
within its operator’s shift.

Each block’s event interval is between the previous block’s time-validity upper bound and its
own time-validity upper bound. The block’s time-validity lower bound is irrelevant to Midgard’s
consensus protocol because the causal relationship between blocks is determined by the forward
links between state queue nodes, as well as the backwards links between block headers. An operator
is free to submit blocks at a rapid cadence during their shift.!

Operator A Operator B
Block 47 |
8] |
9 | ]
0 [
Event intervals: | 48 49 I 50

Figure 3.1.1: Midgard time model. Each rectangle shows a block’s time-validity interval. The color
indicates the operator who must have committed the block. The top axis shows the operator shifts.
The bottom axis shows the event intervals.

Indeed, an operator may commit blocks without waiting for L1 confirmation. As long as the blocks are valid, no
one can interfere with the operator’s chain of block commitment transactions. Moreover, if operators coordinate their
activity offchain, this rapid cadence can be mostly maintained across shift boundaries.
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3.2 Operator directory

Midgard operators receive and process L2 events from users, collate them into blocks, publish the
full block contents on the data availability layer, and commit the block headers to Midgard’s state
queue on L1. This responsibility is shared among the operators on a rotating schedule, with each
operator getting a turn to exclusively process L2 events and then commit their block of events at
the end of their turn.

Anyone can register to become a Midgard operator if they post the required ADA bond. Registrants
must wait a prescribed period of time before they activate as an operator. An active operator can
retire to remove themself from the rotating schedule. Retired operators must wait until all their
committed block headers mature before recovering their ADA bond.

An operator’s ADA bond collateralizes their promise to faithfully process L2 events and commit
valid blocks to L1. If an operator’s block header is proven to be fraudulent, then the operator is
disqualified and forfeits their bond. Similarly, an operator that submits duplicate registrations
forfeits the bonds placed in the duplicates.

Every forfeited bond is split into a reward paid to the fraud prover and a slashing penalty paid (via
transaction fees) to the Cardano treasury. Among the Midgard protocol parameters, the fraud -
prover_reward and slashing penalty parameters must sum up to the required _bond parameter.

3.2.1 Utxo representation

The Operator Directory keeps track of all Midgard operators and stores their bond deposits. It
separates operators into three groups based on their status, with every group using operators’
public key hashes (PKHs) as keys:

* registered operators is a first-in-first-out (FIFO) queue that tracks operators who have
posted their ADA bonds and are waiting to activate. It is implemented as a key-unordered
linked list (see Section A.1.8), where each new registrant is prepended to the beginning of the
list. This means that the earliest registrant to become eligible for activation is always at the
last node of the list.

* active_operators is a set that tracks active operators participating in the rotating schedule,
implemented as a key-ordered linked list (see Section A.1.9).

* retired_operators is a set that tracks retired operators waiting to recover their ADA bonds,
implemented as a key-ordered linked list.

The Operator Directory keeps track of the activation time of every registered operator, which
indicates when the operator will become eligible for activation. It also keeps track of any holds
on the ADA bonds of active and retired operators, which prevent those operators from recovering
their bonds until their latest committed blocks and latest settlement resolution claims mature.

RegisteredOperator := (activation,time : PosixTime)
ActiveOperator = (bond,unlock,time : Option(PosixTime))

RetiredOperator = (bond,unlock,time : Option(PosixTime))
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The above are app-specific types for the data field of their respective lists’ NodeDatum. For example,
the NodeDatum of registered operators is:

RegisteredOperatorDatum := NodeDatum(RegisteredOperator)

3.2.2 Registered operators

The registered_operators queue keeps track of operators after registering and before activating
or de-registering them.

Minting policy

The registered_operators minting policy implements state transitions for its key-unordered
linked list. It is statically parametrized on the hub_oracle and retired _operators minting policies.
Redeemers:

Init. Initialize the registered operators queue via the Midgard hub oracle. Conditions:
1. The transaction must mint the Midgard hub oracle NFT.
2. The transaction must Init the registered_operators queue.

Register Operator. Prepend a node into the registered operators queue with the operator’s
ADA bond at the operator’s key, noting the registration time. Grouped conditions:

» Verify the registration and prepend the registrant to the registered operators:

1. The transaction must Prepend a node into the registered_operators queue. Let
that node be registered_node.

2. The key field of registered node must correspond to a public key hash that signed
the transaction.

3. Theactivation time field of registered node must equal the sum of the Midgard
registration_duration protocol parameter and the upper bound of the transac-
tion’s validity interval.

4. The Lovelace in the registered node must equal the required_bond Midgard
parameter.

Activate Operator. Transfer an operator node from the registered_operators queue to the
active_operators set. Grouped conditions:

* Remove the registrant from the registered operators if it is eligible to activate:

1. The transaction must Remove a node from the registered operators queue. Let
that node be registered_node.

2. The lower bound of the transaction validity interval must meet or exceed the
activation_time.

* Verify that the registrant is being added to active operators:

3. The transaction must include the Midgard hub oracle NFT in a reference input.
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4. Let active _operators be the policy ID in the corresponding field of the Midgard
hub oracle.

5. The transaction must Insert a node into the active _operators set, as evidenced
by minting a active_operators node NFT for the registered node key.

* Verify that the registrant is not already retired:

6. The transaction must include a reference input of a retired_operators node that
proves the registered _node key’s non-membership in that list.

Deregister Operator. Remove a node from the registered _operators queue, with the opera-
tor’s consent, and return the ADA bond to the operator. Conditions:

1. The transaction must Remove a node from the registered operators queue. Let
registered_node be that node.

2. The key field of registered node must correspond to a public key hash that signed the
transaction.

The operator consents to the transaction, so the ADA bond is assumed to be returned to the
operator’s control.

Remove Duplicate Slash Bond. Remove a node from the registered_operators queue if its
key duplicates the key of any other node among the registered, active, or retired operators.
Do not return the duplicate node’s ADA bond to its operator. Conditions:

1. The transaction must Remove a node from the registered operators queue. Let that
node be duplicate_node.

2. The transaction fees must meet or exceed the slashing penalty protocol parameter,
denominated in Lovelaces.

3. Letwitness_status be one of: Registered, Active, or Retired.
4. If witness_status is Registered:

(a) The transaction must include a reference input of a registered operators node
that proves the duplicate node key’s membership in that list.

5. If witness_statusis Active:
(a) The transaction must include the Midgard hub oracle NFT in a reference input.

(b) Let active_operators be the policy ID in the corresponding field of the Midgard
hub oracle.

(c) The transaction must include a reference input of a active _operators node that
proves the duplicate_node key’s membership in that list.

6. If witness_status isRetired:

(a) The transaction must include a reference input of a retired_operators node that
proves the duplicate_node key’s membership in that list.

The submitter of the Remove Duplicate Slash Bond transaction is considered to be the fraud
prover, so the conditions for that redeemer do not need to explicitly enforce that the fraud -
prover_reward is paid out because the submitter consents to the transaction.
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Spending validator

The spending validator of registered operators_addr always forwards to its corresponding
minting policy (statically parametrized) and requires the transaction to invoke it. It does not allow
any in-place modifications to the RegisteredOperator value of the node data field. Conditions:

1. The transaction must mint or burn tokens of the registered_operators minting policy.

3.2.3 Active operators

The active _operators set keeps track of operators after activating and before slashing or retiring
them.

Minting policy

The active_operators minting policy implements state transitions for its key-ordered linked list.
It is statically parametrized on the hub_oracle, registered operators, and retired operators
minting policies. Redeemers:

Init. Initialize the active _operators set via the Midgard hub oracle. Conditions:
1. The transaction must mint the Midgard hub oracle NFT.
2. The transaction must Init the active_operators set.

Activate Operator. Transfer an operator node from the registered_operators queue to the
active_operators set. Conditions:

1. The transaction must Insert a node into the active_operators set. Let that node be
active_node.

2. The bond_unlock_time field of active_node must be None.

3. The transaction must Remove a node from the registered_operators queue, as evi-
denced by burning a registered_operators node NFT corresponding to the active_-
node key.

Remove Operator Bad State. Remove an operator’s node from the active_operators set with-
out returning the operator’s ADA bond to the operator, as a consequence of committing a
fraudulent block to the state queue. Conditions:

1. Let slashed operator be a redeemer argument indicating the operator being slashed.

2. The transaction must Remove a node from the active_operators set. Let that node be
removed_node.

3. slashed operator must match the key of removed node.

4. The transaction fees must meet or exceed the slashing penalty protocol parameter,
denominated in Lovelaces.

5. The transaction must include the Midgard hub oracle NFT in a reference input.

6. Let state_queue be the policy ID in the corresponding field of the Midgard hub oracle.
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7.

The transaction must Remove a node from the state_queue via the Remove Fraudu-
lent Block Header redeemer. The fraudulent operator argument provided to that
redeemer must match slashed operator.

The state queue’s onchain code is responsible for disposing of the operator’s ADA bond.

Remove Operator Bad Settlement. Remove an operator’s node from the active_operators
set without returning the operator’s ADA bond to the operator, as a consequence of attaching
a fraudulent resolution claim to the settlement queue. Conditions:

1.

2.

Let slashed_operator be a redeemer argument indicating the operator being slashed.

The transaction must Remove a node from the active _operators set. Let that node be
removed_node.

. slashed _operator must match the key of removed node.

The transaction fees must meet or exceed the slashing penalty protocol parameter,
denominated in Lovelaces.

. The transaction must include the Midgard hub oracle NFT in a reference input.

Let settlement_queue_addr be the address in the corresponding field of the Midgard
hub oracle.

The transaction must spend a node from the settlement_queue_addr via the Disprove
Resolution Claim redeemer. The fraudulent_operator argument provided to that
redeemer must match slashed operator.

The settlement queue’s onchain code is responsible for disposing of the operator’s ADA bond.

Retire Operator. Transfer an operator node, unchanged, from the active_operators set to
the retired_operators set. Conditions:

1.

The transaction must Remove a node from the active_operators set. Let that node be
active_node.

. The transaction must Insert a node into the retired _operators set, as evidenced by

minting a retired operators node NFT corresponding to the active node key.
Let retired node be the node inserted into the retired operators set.

The bond_unlock_time must match between active_node and retired_node.
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Spending validator

The spending validator of active_operators_addr forwards to its corresponding minting policy
(statically parametrized) when the transaction invokes it. When the minting policy isn’t invoked,
the spending validator updates the bond unlock time of an operator that commits a new block to
the state queue or attaches a resolution claim to a settlement queue node. Redeemers:

List State Transition. Forward to minting policy. Conditions:
1. The transaction must mint or burn tokens of the active _operators minting policy.

Update Bond Hold New State. Update an operator’s bond unlock time when they commit a
block to the state queue. Grouped conditions:

» Update the bond unlock time of a operator:

1. The transaction must not mint or burn tokens of the active _operators minting
policy.

2. Letactive_node be an output of the transaction indicated by a redeemer argument.

3. active node must be an active_operators node that matches the datum argu-
ment of the spending validator on the key and 1ink fields.

4. The bond unlock_time field of active node must match the sum of the Midgard
maturity_duration parameter and the upper bound of the transaction validity
interval.

* Verify that the operator is currently committing a block header to the state queue:
5. The transaction must include the Midgard hub oracle NFT in a reference input.

6. Let state_queue be the policy ID in the corresponding field of the Midgard hub
oracle.

7. The transaction must Append a node into the state_queue via the Commit Block
Header redeemer. The redeemer’s operator field must match the key field of the
active_node.

Update Bond Hold New Settlement. Update an operator’s bond unlock time when they attach
a resolution claim to a settlement node. Grouped conditions:

» Update the bond unlock time of a operator:

1. The transaction must not mint or burn tokens of the active _operators minting
policy.

2. Letactive_node be an output of the transaction indicated by a redeemer argument.

3. active_node must be an active_operators node that matches the datum argu-
ment of the spending validator on the key and 1ink fields.

4. The bond unlock time field of active node must match the sum of the Midgard
maturity_duration parameter and the upper bound of the transaction validity
interval.
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* Verify that the operator is currently committing a block header to the state queue:
5. The transaction must include the Midgard hub oracle NFT in a reference input.

6. Let settlement_queue_addr be the policy ID in the corresponding field of the
Midgard hub oracle.

7. The transaction must spend a settlement queue node with the Attach Resolution
Claim redeemer. The redeemer’s operator field must match the key field of the
active_node.
3.2.4 Retired operators
The retired_operators set keeps track of operators after retiring and before slashing or returning
their ADA bonds.
Minting policy

The retired _operators minting policy implements structural operations for its key-ordered linked
list. It is statically parametrized on the hub_oracle minting policy. Redeemers:

Init. Initialize the retired _operators set via the Midgard hub oracle. Conditions:
1. The transaction must mint the Midgard hub oracle NFT.
2. The transaction must Init the retired_operators set.

Retire Operator. Transfer an operator node, unchanged, from the active_operators set to
the retired_operators set. Conditions:

1. The transaction must Insert a node into the retired operators set. Let that node be
retired_node.

2. The transaction must include the Midgard hub oracle NFT in a reference input.

3. Let active_operators be the policy ID in the corresponding field of the Midgard hub
oracle.

4. The transaction must Remove a node from the active _operators set, as evidence by
the burning of a active_operators node NFT corresponding to the retired node key.

The active operators’ minting policy ensures that the operator node’s contents remain un-
changed during the transfer.

Recover Operator Bond. Remove an operator’s node from the retired operators set, with
the operator’s consent, and return the ADA bond to the operator. Grouped conditions:

1. The transaction must Remove a node from the retired operators set. Let that node
be retired_ node.

2. If the bond_unlock_time field of retired_node is not None, then the lower bound of the
transaction validity interval must meet or exceed the bond unlock_time.

The operator consents to the transaction, so the ADA bond is assumed to be returned to the
operator’s control.
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Remove Operator Bad State. Remove an operator’s node from the retired operators set
without returning the operator’s ADA bond to the operator. Conditions:

1.

2.

Let slashed operator be a redeemer argument indicating the operator being slashed.

The transaction must Remove a node from the retired operators set. Let that node
be removed _node.

. slashed operator must match the key of removed _node.

The transaction fees must meet or exceed the slashing penalty protocol parameter,
denominated in Lovelaces.

. The transaction must include the Midgard hub oracle NFT in a reference input.

Let state_queue be the policy ID in the corresponding field of the Midgard hub oracle.

The transaction must Remove a node from the state_queue via the Remove Fraudu-
lent Block Header redeemer. The fraudulent operator argument provided to that
redeemer must match slashed operator.

The state queue’s onchain code is responsible for paying out the fraud prover’s reward from
the operator’s forfeited ADA bond.

Remove Operator Bad Settlement. Remove an operator’s node from the retired operators
set without returning the operator’s ADA bond to the operator, as a consequence of attaching
a fraudulent resolution claim to the settlement queue. Conditions:

1.

2.

Let slashed operator be a redeemer argument indicating the operator being slashed.

The transaction must Remove a node from the retired operators set. Let that node
be removed node.

. slashed operator must match the key of removed_node.

The transaction fees must meet or exceed the slashing penalty protocol parameter,
denominated in Lovelaces.

. The transaction must include the Midgard hub oracle NFT in a reference input.

Let settlement _queue_addr be the address in the corresponding field of the Midgard
hub oracle.

The transaction must spend a node from the settlement_queue_addr via the Disprove
Resolution Claim redeemer. The fraudulent_operator argument provided to that
redeemer must match slashed operator.

The settlement queue’s onchain code is responsible for disposing of the operator’s ADA bond.

Spending validator

The spending validator of retired operators_addr always forwards to its corresponding minting
policy (statically parametrized) and requires the transaction to invoke it. It does not allow any
in-place modifications to the RegisteredOperator value of the node data field. Conditions:

1. The transaction must mint or burn tokens of the retired_operators minting policy.
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3.3 Scheduler

The Midgard scheduler is an L1 mechanism that indicates which operator is assigned to the current
shift and controls the transitions to the next shift and next operator. Whenever a shift ends, the
next operator in key-descending order from the active_operators list has the exclusive privilege
to advance the scheduler’s state to the next shift, assigning it to themself.

When the root node of active_operators is reached, the highest-key active operator rewinds the
scheduler to start a new cycle. However, the scheduler requires the registered _operators queue
to be checked to see if any registered operators are eligible to activate. If so, all eligible registered
operators must activate before the new cycle can begin.

Active operators can retire anytime without waiting for the end of the scheduler cycle. The scheduler
automatically adjusts to retirement because the next operator is always selected among active

operators. However, to minimize disruption, an operator should complete their shift before retiring.

We should allow operators to take over for negligent operators.
0 If a shift’s assigned operator neglects their duty to commit blocks regularly to the
state queue, the next active operator can take over the shift (without starting the next
shift). Similarly, the next operator can advance the scheduler and take over if their
predecessor neglects to do so. Midgard’s operator_inactivity_timeout protocol
parameter controls when this unscheduled takeover can happen.

3.3.1 Utxo representation

The scheduler state consists of a single utxo that holds the scheduler NFT, minted when Midgard is
initialized via the hub oracle. That utxo’s datum type is as follows:

operator :  PubKeyHash
SchedulerDatum := p. Y . y
shift_start : PosixTime

The shift’s inclusive lower bound is shift_start, and its exclusive upper bound is the sum of
shift_start and the shift_duration Midgard protocol parameter.
3.3.2 Minting policy

The scheduler minting policy initializes the scheduler state. It is statically parametrized on the
hub_oracle minting policy. Redeemers:

Init. Initialize the scheduler via the Midgard hub oracle. Conditions:
1. The transaction must mint the Midgard hub oracle token.

2. The transaction must mint the scheduler NFT.
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3.3.3 Spending validator

The spending validator of scheduler_addr controls the evolution of the scheduler state. It is
statically parametrized on the active_operators and registered_operators minting policies.
Redeemers:

Advance. The next operator in key-descending order advances the scheduler to the next shift
and assigns it to themself. Grouped conditions:

» Parse scheduler input and output:

1. Let scheduler _datum be the datum argument for the spending validator being
evaluated. It is assumed to belong to the transaction input that holds the scheduler

NEFT.
2. Let scheduler output be the transaction output that holds the scheduler NFT.
3. Let operator be the operator field value of scheduler_output.
4. Let previous_operator be the operator field value of scheduler_datum.
* Verify the shift transition:

5. Theshiftinterval of scheduler_output must equal that of scheduler_datum, moved
forward by shift_duration.

» Verify operator consent:
6. Either of the following must hold:

(a) The transaction is signed by operator, and the scheduler_output shift inter-
val contains the transaction validity interval.

(b) The scheduler_output shift interval occurs entirely before the transaction
validity interval.

* Verify the operator transition:

7. The transaction must include a reference input of an active _operators node. Let
operator_node be that node.

8. The key of operator node must match operator.
9. The 1ink of operator_node must match or exceed previous_operator.?

Rewind. The highest-key operator advances the scheduler to the next shift and assigns it to
themself, provided that no registered operators are eligible to activate. Grouped conditions:

» Parse scheduler input and output:

1. Let scheduler datum be the datum argument for the spending validator being
evaluated. It is assumed to belong to the transaction input that holds the scheduler

NFT.

2. Let scheduler_output be the transaction output that holds the scheduler NFT.

21t will exceed the previous operator if they have retired.
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3. Let operator be the operator field value of scheduler _output.
4. Let previous_operator be the operator field value of scheduler_datum.
o Verify the shift transition:

5. The shiftinterval of scheduler_output must equal that of scheduler_datum, moved
forward by shift _duration.

* Verify operator consent:
6. Either of the following must hold:

(a) The transaction is signed by operator, and the scheduler_output shift inter-
val contains the transaction validity interval.

(b) The scheduler_output shift interval occurs entirely before the transaction
validity interval.

* Rewind to a new operator cycle:

7. The transaction must include a reference input of the last active operators node.
Let operator_node be that node.

8. The transaction must include a reference input of the root active _operators node.
Let root_node be that node.

9. The key of operator node must match operator.
10. The link of root_node must match or exceed previous_operator.?
» Verify that no registered operator is eligible to activate:

11. The transaction must include a reference input of a registered_operators node.
Let registered node be that node.

12. registered _node must be the last node of the registered_operators queue. This
means it corresponds to the earliest registrant that hasn’t yet activated because
new registrants are prepended to the beginning of that queue.

13. registered_node is not yet eligible for activation — the upper bound of the transac-
tion validity interval is smaller than the activation time of the registered node.

3In other words, this means that there is no active_operators node with a smaller key than previous_operator. If
there were such a node, then we would advance the scheduler to that node instead of rewinding.
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3.4 State queue

The state queue is an L1 data structure that stores Midgard operators’ committed block headers
until they are confirmed. Active operators from the operator directory (see Section 3.2) take turns
committing block headers to the state queue according to the rotating schedule enforced by the
scheduler (see Section 3.3).

3.4.1 Utxo representation

The state_queue is implemented as a key-unordered linked list of block headers (see Section 1.1).
Each state_queue node’s key is its block header’s hash.

StateQueueDatum := NodeDatum(Header)

valid_key(scd : StateQueueDatum) = (scd.key = Some(hash(scd.data)))

Committing a block header to the state_queue means appending a node containing the block header
to the end of the queue. After staying there for the maturity duration (a protocol parameter), it
is merged to the confirmed state (held at the state_queue root node) in the first-in-first-out (FIFO)
order.

3.4.2 Minting policy

The state_queue minting policy controls the structural changes to the state queue. It is stati-
cally parametrized on the hub_oracle, active _operators, retired operators, scheduler, and
fraud_proof minting policies. Redeemers:

Init. Initialize the state_queue via the Midgard hub oracle. Conditions:
1. The transaction must mint the Midgard hub oracle token.
2. The transaction must Init the state_queue.

Commit Block Header. An operator commits a block header to the state queue if it is the opera-
tor’s turn according to the rotating schedule. Grouped conditions:

» Commit the block header to the state queue, with the operator’s consent:

1. Let operator be a redeemer argument indicating the key of the operator commit-
ting the block header.

2. The transaction must be signed by operator.

3. The transaction must Append a node to the state_queue. Among the transaction
outputs, let that node be header node and its predecessor node be previous_-
header _node.

4. operator must be the operator of header _node.
5. The key field of header node must be the hash of its data field.

* Verify that it is the operator’s turn to commit according to the scheduler:
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6. The transaction must include a reference input with the scheduler NFT. Let that
input be the scheduler_state.

7. The operator field of scheduler_state must match operator.
* Verify block timestamps:

8. The start _time of header node must be equal to the end time of the previous -
header_node.

9. The end_time of header node must match the transaction’s time-validity upper
bound.

10. The end_time of header_node must be within the shift interval of scheduler_-
state.

» Update the operator’s timestamp in the active operators set:

11. The transaction must include an input, spent via the Update Bond Hold New State
redeemer, of an active_operators node with a key matching the operator.

Merge To Confirmed State. If a block header is mature, merge it to the confirmed state of the
state_queue. Conditions:

1. The transaction must Remove a node from the state_queue. Let header node be the
removed node, confirmed_state node_input be its predecessor node before removal,
and confirmed _state node_output be the remaining node after removal.

2. confirmed state node_input and confirmed state node_output must both be root
nodes of state_queue.

3. header node must be mature — the lower bound of the transaction validity interval
meets or exceeds the sum of the end_time field of header node and the Midgard matu-
rity_duration protocol parameter.

4. confirmed state node_output must match:

(@) confirmed state node_input on start_time.

(b) header node onprev_header_hash,utxo_root,end time,and protocol _version.
5. The header_hash of confirmed state node_output must match the header node key.

6. If either the deposits_root or withdrawals root of header node is not the MPT root
hash of the empty set, a settlement_queue node must be appended via the New Settle-
ment redeemer. The redeemer must mention header node by input index.

Remove Fraudulent Block Header. Remove a fraudulent block header from the state queue
and slash its operator’s ADA bond. Grouped conditions:

* Remove the fraudulent block header:

1. Let fraudulent operator be a redeemer argument indicating the operator who
committed the fraudulent block header.
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2. The transaction must Remove a node from the state_queue. Let removed node be
the removed node and predecessor_node be its predecessor node before removal.

3. fraudulent_operator must match the key of removed_node.
* Slash the fraudulent operator:

4. Let operator_status be a redeemer argument indicating whether the fraudulent
operator is active or retired.

5. If operator_status is active:

(a) The transaction must Remove a node from the active_operators set via the
Remove Operator Bad State redeemer. The slashed operator argument pro-
vided to that redeemer must match fraudulent_operator.

6. Otherwise:

(a) The transaction must Remove a node from the retired operators set via
the Remove Operator Bad State redeemer. The slashed operator argument
provided to that redeemer must match fraudulent _operator.

* Verify that fraud has been proved for the removed node or its predecessor:
7. The transaction must include a reference input holding a fraud_proof token.
8. Let fraud proof_block hash be the last 28 bytes of the fraud_proof token.
9. One of the following must be true:

(a) fraud_proof_block hash matches the predecessor node key. This means
that a child of the fraudulent node is being removed.

(b) fraud_proof_block hash matches the removed node key, and the last node of
state_queue is removed node. This means that the fraudulent node is being
removed and has no more children.

3.4.3 Spending validator

The spending validator of state_queue_addr always forwards to its corresponding minting policy

(statically parametrized) and requires the transaction to invoke it. It does not allow any in-place
modifications to the data field of nodes in state_queue. Conditions:

1. The transaction must mint or burn tokens of the state_queue minting policy.
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3.5 Escape hatch

The Midgard escape hatch is an L1 mechanism that can be triggered if the last block in the state
queue is too old relative to the current time, as controlled by the Midgard escape_hatch block_age
parameter. In other words, it is triggered in the extreme case when the Midgard active operators
have completely stopped committing blocks to the state queue.

When the escape hatch is triggered, Midgard enters an emergency period with a duration controlled
by the Midgard emergency_duration parameter. During this emergency period, the Operator
Directory allows new operators to register with a reduced bond requirement. As a result, honest
actors can more easily become operators to restart Midgard block production.

When the emergency period is over, the reduced-bond operators have a grace period to voluntarily
either retire or increase their bonds to remain as regular operators. After the grace period, anyone
can retire any remaining operator that has not increased their bond, applying a minor penalty to
the bond and claiming it as a reward. See Section 3.2.

3.5.1 Utxo representation

The Midgard escape hatch is represented onchain by a single utxo holding an NFT with this datum:
EscapeHatchDatum := { emergency_end_time : PosixTime }

This datum is set to zero when Midgard is initialized. When the escape hatch is triggered, it is set to
the time when the emergency period will end.
3.5.2 Minting policy

The escape_hatch minting policy initializes the escape hatch state. It is statically parametrized on
the hub_oracle minting policy. Redeemers:

Init. The transaction must mint the Midgard hub oracle token.

3.5.3 Spending validator
The spending validator of escape_hatch_addr controls the escape hatch trigger. Redeemers:
Trigger Escape Hatch. Conditions:
1. Let last_header node be the last node in the state_queue.

2. The transaction’s time-validity lower bound must exceed last_header node.end time
by escape_hatch block_age.

3. The transaction’s time-validity interval duration must not exceed escape_hatch trig-
ger_duration.

4. Let escape_hatch output be the transaction output that holds the escape_hatch token.

5. The emergency_end_time of escape_hatch_output must match the transaction’s time-
validity upper bound, moved forward by emergency_duration.
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3.6 Settlement queue

The settlement queue tracks confirmed deposits, withdrawal orders, and transaction orders until
they are spent. Each settlement node in the queue is created whenever a block merges into the
confirmed state and includes any deposits, withdrawals, or transaction orders. The settlement
node contains the block’s deposits root hash, withdrawals root hash, transactions root hash, and
event interval. The transactions root hash stored in the settlement node is the Merkle root of all
transactions in the block, including both transaction requests (from operators’ mempools) and
transaction orders (from L1 events). This allows operators to resolve transaction order event UTxOs
after merging their associated blocks into confirmed state. Users must reference a settlement node
to spend its confirmed deposits, withdrawal orders, or transaction orders.

The current operator can optimistically resolve any settlement node, claiming that its confirmed
deposits, withdrawal orders, and transaction orders have all been spent. To do so, the operator
attaches a resolution claim to the settlement queue for the maturity_duration (a protocol parame-
ter). During this maturity period, if the operator’s resolution claim is proven fraudulent, the prover
can slash the operator’s bond and remove the resolution claim from the settlement node. After
the maturity period, the settlement node can be removed from the queue if the resolution claim is
intact.

@ Perhaps resolving a settlement node should also release the user fees collected from
- the node’s deposits, withdrawals, and transaction orders to the operator. These fees
would incentivize the operator to resolve settlement nodes promptly.

The timestamp in the operator’s node in the Operator Directory should be updated whenever an
operator optimistically resolves a settlement node, similar to how it is updated when committing a
block to the state queue. Updating this timestamp ensures that the operator cannot recover their
bond until all their resolution claims have matured in the settlement queue.

3.6.1 Linked list representation

The settlement queue’s nodes are arranged as an L1 linked list in the same chronological order as
their corresponding confirmed blocks. This chronological order makes it possible to prove that an
unspent L1 event is stranded—it has not been included in any existing confirmed block but cannot
be included in any new block.

For example, suppose an operator block fraudulently excludes an L1 deposit, but no fraud prover
removes the block before its confirmation. In that case, the deposit cannot be included in any
subsequent block or spent into the reserves. Without the refund mechanism based on proof of
stranding, the deposit would stay stranded forever at Midgard’s deposit address.

An L1 event is stranded (and can therefore be refunded) if it satisfies all of the following conditions:
1. The event’s inclusion time is earlier than the confirmed state’s end time.
2. Any of the following conditions hold:
(a) The event’s inclusion time is not within the event interval of any settlement node.

(b) The event’s inclusion time is within the event interval of a settlement node. However,
the event is not in the corresponding deposit or withdrawal tree in the settlement node.
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In this way, while the Midgard protocol prevents deposits from ever being stranded in the first
place (as long as fraud proofs are promptly submitted), the refund mechanism ensures that they
can still be retrieved if they occur.

3.6.2 Minting policy

The settlement_queue minting policy is statically parametrized on the hub_oracle minting policy.
It'sresponsible for appends to the settlement_queue list’s end, and also removal of nodes anywhere

in the list.

Init. Initialize the settlement_queue via the Midgard hub oracle. Conditions:

1.

2.

The transaction must mint the Midgard hub oracle NFT.

The transaction must Init the settlement_queue list.

Append Settlement Node. Append a settlement node to store a merged block’s deposits, with-
drawals and transaction orders. Conditions:

1.

2.

6.

The transaction must include the Midgard hub oracle NFT in a reference input.

Let state_queue be the policy ID in the corresponding field of the Midgard hub oracle.

. The transaction must Remove a state_queue node via the Merge To Confirmed State

redeemer. Let merged block be the block being merged to the confirmed state, and let
header_hash be its header-hash key.

The transaction must Append a node to the settlement queue with a key matching
header_hash. Let new_settlement node be the node being appended.

. merged_block and new_settlement node must match on all of these fields:

* deposits_root

* withdrawals_root
* transactions_root
* start_time

* end_time

The resolution_claim of new_settlement_node must be empty.

Resolve Settlement Node. Remove a settlement node if its resolution claim has matured. Con-
ditions:

1.

The transaction must Remove a node from the settlement_queue. Let removed_set-
tlement _node be this node.

. The resolution_claim of removed_settlement node must not be empty.
. The transaction must be signed by the operator of the resolution claim.

. The transaction’s time-validity lower bound must match or exceed the resolution_time

of the resolution_claim.

46
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22



3.6.3 Spending validator

The spending validator of settlement_queue is statically parametrized on the settlement_queue
and hub_oracle minting policy. Conditions:

List State Transition. Forward to minting policy. Conditions:

1.

The transaction must mint or burn tokens of the settlement_queue minting policy.

Attach Resolution Claim. The current operator attaches a resolution claim to a settlement
node. Conditions:

1.

2.

The spent input must be a settlement node without a resolution claim.

The spent input must be reproduced as a settlement node with a resolution claim.

. The transaction must be signed by the resolution claim’s operator.

The transaction must include the Midgard hub oracle NFT in a reference input.

. Let active_operators and scheduler be the corresponding policy IDs in the Midgard

hub oracle.

The transaction must include an input (operator_node), spent via the Update Bond
Hold New Settlement redeemer, of an active_operators node with a key matching the
resolution claim’s operator.

The bond _unlock time of the operator _node must match the resolution_time of the
resolution claim.

. The transaction must include the scheduler utxo as a reference input, indicating that

the current operator matches the resolution claim’s operator.

Disprove Resolution Claim. Disprove and detach a settlement node’s resolution claim, slashing
the claimant operator. Conditions:

1.

The spent input must be a settlement node with a resolution claim. Let operator be the
operator of that claim.

. The spent input must be reproduced as a settlement node without a resolution claim.

. The transaction must include the Midgard hub oracle NFT in a reference input.

Let active operators, deposit, withdrawal, and tx_order be the corresponding pol-
icy IDs in the Midgard hub oracle.

. The transaction must include either a deposit, a withdrawal, or an transaction order as

a reference input. Let that reference input be unprocessed_event.

A valid membership proof must be provided, proving that unprocessed_event is a
member of the corresponding tree in the settlement node.

The transaction’s time-validity upper bound must be earlier than the resolution claim’s

resolution_time.

Let operator_status be a redeemer argument indicating whether operator is active
or retired.
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9. If operator_status is active:

(a) The transaction must Remove a node from the active_operators set via the Re-
move Operator Bad Settlement redeemer. The slashed operator argument pro-

vided to that redeemer must match operator.

10. Otherwise:

(a) The transaction must Remove a node from the retired operators set via the
Remove Operator Bad Settlement redeemer. The slashed operator argument
provided to that redeemer must match operator.
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3.7 Reserve and payout

Midgard’s reserve safeguards funds absorbed from confirmed deposits until Midgard’s payout
accumulator utxos collect them. Midgard’s payout accumulators collect funds from Midgard’s
reserve in order to pay out confirmed withdrawal orders in full.

When a deposit is absorbed into Midgard’s reserve, its funds (excluding the deposit ID token) are
sent to a single utxo at the reserve address without a datum, without a reference script attached,
and without being merged with the funds from any other deposits (see Section 2.1.2). In other
words, the deposit utxo is reproduced one-to-one at the reserve address after removing the datum
and ID token that identified the deposit.

Each payout accumulator utxo is initialized by proving that its corresponding withdrawal order
is confirmed (via a settlement node), burning the withdrawal order’s ID token, and minting the
corresponding payout ID token (see Section 2.4.2). The payout accumulator’s datum is:

[1_address : Address
PayoutDatum := 4 I1_datum: Option(Data)
[2_value : Value

The payout accumulator collects funds from the reserve until it contains sufficient funds for the
withdrawal’s payout, sending any excess funds back to the reserve. When the payout accumulator
contains sufficient funds, it sends the funds to the withdrawal’s destination address and datum.
3.7.1 Reserve spending validator
The spending validator of reserve_addr implements the logic of Midgard’s reserve. Redeemers:
Spend. Spend a reserve utxo to transfer some of its funds into a payout accumulator.
1. The transaction must spend an input from the payout_addr via the Collect Reserve -
Funds redeemer.

3.7.2 Payout minting policy

The payout minting policy ensures that only a single payout accumulator can be initialized or
payout can be completed per transaction. Redeemers:

Mint. Mint a single payout token. Conditions:
1. The transaction must mint exactly one token of payout.
2. The transaction must burn exactly one token of withdrawal.
3. The minted and burned tokens must match on token name.
4. The transaction must not mint or burn any other tokens.
Burn. Burn a single payout token. Conditions:
1. The transaction must burn exactly one token of payout.
2. The transaction must not mint or burn any other tokens.
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3.7.3 Payout spending validator

The spending validator of payout_addr is responsible for collecting funds from the Midgard reserve
until a complete payout can be sent to its destination.

Collect Reserve Funds. Collect funds from the Midgard reserve. Conditions:

1.

2.

8.

Let payout_input be the transaction input being spent. Let payout_datum be its datum.

Let reserve_input be the sole transaction input from reserve_addr.

. Let payout_output be a transaction output.

payout_input and payout_output must each hold exactly one payout token and it must
match between them.

. Let value_diff be the sum of values of payout_input and reserve_input, minus the

value of payout.
value_diff must not be negative.
If value diff is positive:

» The transaction must send a change output to reserve_addr with a value that
matches or exceeds value_diff.

The transaction must not mint or burn any tokens.

Complete Payout. When the payout accumulator contains sufficient funds, complete the payout
to the destination address and datum. Conditions:

1.

2.

Let payout_input be the transaction input being spent. Let payout_datum be its datum.

payout_input must hold exactly one token of payout, which must be the only payout
burned in the transaction.

. Let payout_output be a transaction output.

payout_output.address must match payout_datum.1l1 address.
payout_output.datum must match payout_datum.11 datum.

payout_output.value must match or exceed payout_datum.12 value, excluding the
burned token.

The transaction must not mint or burn any other tokens.
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3.8 Midgard hub oracle

This oracle keeps track of minting policy IDs and spending validator addresses for the lists used in
the operator directory, state queue, and fraud proof set of the Midgard protocol. It consists of a
single utxo holding the hub oracle NFT and a datum of the following type:

registered_operators : Policyld
active_operators : Policyld
retired_operators : Policyld
scheduler : Policyld
state_queue : Policyld
fraud_proof_catalogue : Policyld
fraud_proof : Policyld
deposit : Policyld
withdrawal : Policyld
tx_order : Policyld
settlement_queue : Policyld
payout : Policyld
HubOracleDatum := registered_operators_addr:  Address
active_operators_addr : Address
retired_operators_addr : Address
scheduler_addr : Address
state_queue_addr : Address
fraud_proof_catalogue_addr : Address
fraud_proof_addr : Address
deposit-addr : Address
withdrawal_addr : Address
tx_order_addr : Address
settlement_queue_addr : Address
reserve_addr : Address
payout_addr : Address

o | Add missing policy IDs and addresses to the hub oracle datum.

3.8.1 Minting policy

The hub_oracle minting policy ensures that all Midgard lists are initialized together and sent to
their respective spending validator addresses. Redeemers:

Init. Initialize all Midgard lists and send their root nodes to their respective validator addresses.

Conditions:
1. Let nonce_utxo be a static parameter of the hub_oracle minting policy.

2. nonce_utxo must be spent.
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9.

. The hub oracle NFT must be minted.

Let hub_oracle_output be the transaction output with the hub oracle NFT.

. hub_oracle_output must not contain any other non-ADA tokens.

hub_oracle_output must be sent to the burn_everything spending validator address.

The root node NFT of every linked list policy ID in hub_oracle_output must be minted
and sent to the corresponding spending validator address in hub_oracle.

The NFT of the scheduler policy ID in hub_oracle_output must be minted and sent to
the scheduler_addr.

No other tokens must be minted or burned.

The nonce utxo proves authority for initialization — whoever controls it is authorized to
initialize the Midgard L1 data structures.

3.8.2 Spending validator

The spending validator of hub_oracle does not allow its utxo to be spent.
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Chapter 4

Proof protocol

4.1 Fraud proof catalogue

For every possible violation of Midgard’s ledger rules (see Chapter 5), Midgard defines an onchain
procedure (see Section 4.3) to verify whether a given fraud proof demonstrates the existence of
that violation in a given block.

Midgard’s fraud proof catalogue defines the universe of fraud proof verification procedures. It
maps a unique 4-byte integer (8,) index to the first step of each procedure.! On Cardano L1, the
Merkle Patricia Trie (MPT) root hash (RH) of this map is stored in a single designated utxo created
at Midgard’s initialization.

FraudProofCatalogueDatum := Rﬂ(Map(ﬂ;, ScriptHash))

= W({<ki : B4, vi : ScriptHash) | Vi # j. ki # k; })

4.1.1 Minting policy

The fraud proof_catalogue minting policy is statically parametrized on the hub_oracle minting
policy. Redeemers:

Mint. Initialize the fraud_proof_catalogue via the Midgard hub oracle. Conditions:

1. The transaction must mint the Midgard hub oracle NFT.

4.1.2 Spending validator

The spending validator of fraud proof_catalogue_addr does not allow its utxo to be spent. Midgard’s
fraud proof verification procedures are defined once and for all at initialization.

1Using 4-byte integer indices means that the catalogue can store up to 4096 procedures, which is more than sufficient
for Midgard’s ledger rules.

53
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22



4.2 Fraud proof tokens

Fraud proof tokens represent fraud proof computations that have successfully concluded.

4.2.1 Minting policy

The fraud_proof minting policy is statically parametrized on the computation thread and hub_-
oracle minting policies. Redeemers:

Mint. Mint a new fraud proof token whenever a fraud proof computation succeeds. Conditions:

1.

2.

The transaction must burn a computation_thread token.

The transaction must mint a fraud_proof token with the same token name as the com-
putation_thread token.

. The transaction must include the Midgard hub oracle NFT in a reference input.

. Let fraud proof _addr be the policy ID in the corresponding field of the Midgard hub

oracle.

. The fraud _proof token must be sent to the fraud proof_addr spending validator.

4.2.2 Spending validator

The spending validator of fraud proof_addr does not allow its utxo to be spent. Midgard fraud
proofs last forever.

54
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22



4.3 Fraud proof computation threads

A computation thread splits up a large computation into a series of steps, passing control between
the steps in the continuation-passing style (CPS). In other words, the computation thread is a state
machine (see Section A.2) with a linear state graph.

Each step is a spending validator that executes the following sequence:
1. Parses the computation state from its datum.
2. Optionally receives arguments from its redeemer to guide the computation step.
3. Advances the computation by the step, producing a new computation state.

4. Suspends the computation by serializing the new computation state into a new datum that it
sends to the spending validator of the next step.

All steps in a computation thread parametrize the same datum type:

fraud- : PubKeyHash
StepDatum (state_data) ::{ raud-prover: FubreyHras }

data: state_data

4.3.1 Minting policy

The computation_thread minting policy initializes its state machine. It is statically parametrized
on the fraud proof_catalogue and hub_oracle minting policies. Redeemers:

Init. Conditions:
1. The transaction must include the fraud proof_catalogue NFT in a reference input.

2. Let fraud category_id and fraud_category be a four-byte key and its corresponding
value (a script hash) in the MPT root hash stored in the fraud_proof_catalogue.

3. The transaction must include the Midgard hub oracle NFT in a reference input.
4. Let state_queue be the policy ID in the corresponding field of the Midgard hub oracle.
5. The transaction must reference a state_queue node. Let fraud_node be that node.

6. The transaction must mint a single token of the computation_thread minting policy.
The token name must concatenate fraud category_id and the 28-byte block header
hash in the key of fraud node.

7. The computation thread token must be sent to the spending validator address of fraud -
category. Let output_state be that transaction output.

8. The output_state datum type must be StepDatum(Void).?
9. The transaction must be signed by the fraud prover pub-key hash of output_state.
10. Other than ADA, output_state must not hold any other tokens.

11. The transaction must not mint or burn any other tokens.

2Aiken calls it StepDatum(Void), while Plutarch calls it StepDatum(PUnit).
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Success. Terminate the state machine normally from the final spending validator in the com-
putation. There are no conditions because this redeemer relies on the spending validator to
burn the token.

Cancel. Terminate the state machine exceptionally from any spending validator in the compu-
tation. There are no conditions because this redeemer relies on the spending validator to
burn the token.

4.3.2 Spending validators

A fraud-proof computation succeeds if its thread token passes through all the steps’ spending
validator addresses. In that case, the last step’s spending validator reifies the successful fraud-
proof by requiring a fraud-proof token to be minted. The fraud-proof minting policy requires the
computation thread token to be burned, specifically via the Success redeemer.

On the other hand, at any step, the person who initiated the computation thread can cancel the
computation instead of advancing it. In that case, the step’s spending validator requires the compu-
tation thread token to be burned via the Cancel redeemer. Thus, while there is typically only one
path for a computation thread to reach success via the sequential steps,® there may be multiple
opportunities for the computation to be canceled along the way.

For each fraud-proof category, each spending validator is custom-written to express the specific
logic of that computation step, and it is statically parametrized on the next step’s spending validator
(if any). One of the custom conditions of the computation step should verify the transition between
the input state and output state of the thread:

verify_transition : (Input, Output, ..Args) — Bool
verify_transition(i, o, ..args) := (transition(i, .args) = o)

transition : (Input, ..Args) — Output

All of the spending validators share the same parametric redeemer type, but each spending validator
can parametrize the Continue redeemer by a different type to hold the custom instructions needed
to guide the computation step:

StepRedeemer(instructions) := Continue(instructions) | Cancel

These redeemers should be handled in the following general pattern:
Continue. Advance the computation. Conditions:
1. If this is the last step of the computation:

* Mint the fraud token, which will implicitly burn the computation thread token
with the Success redeemer. Let output_state be that transaction output.

* The output_state datum type must be StepDatum(Void).

3Technically, if there are multiple instances of the same fraud category in a fraudulent block, then there is a corre-
sponding number of paths to prove the occurrence of that fraud category in the block. The redeemer arguments provided
to the computation steps collectively select one of these paths.

56
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22



* The fraud prover field must match between the output_state and the input
datum.

2. Otherwise:

* The computation thread token must be sent to the next step’s spending validator.
Let output_state be that transaction output.

* The fraud prover field must match between the output_state and the input
datum.

3. Evaluate the custom conditions of the computation step, including verifying the state
transition.

4. The custom conditions may require the transaction to reference a state queue with a
key hash matching the last 28 bytes of the computation thread token name.

5. The transaction must not mint or burn any other tokens.
Cancel. Cancel the computation. Conditions:
1. Burn the computation thread token with the Cancel redeemer.

2. Return the ADA from the computation thread utxo to the fraud prover pub-key defined
in the input datum.

3. The transaction must not mint or burn any other tokens.
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Chapter 5

Ledger rules and fraud proofs

5.1 Midgard Ledger Rules and Fraud Proofs

In the following sections the following premises are used:

b € Blocks
txs := transactions(b)
UtxoSpre := prev_utxos(b)
UtXO0Spost := Utxos(b)

wtxs := withdrawals(b)

5.1.1 Rule: All inputs must be valid
A transaction cannot spend a non-existing (or an already spent) UTxO. Formal specification:
Vt € Ledger, Vi € spend_inputs(t) :

(Jt; € Ledger, t #t; A i€ outputs(ty)) A
(At € Ledger, t # t, A i€ spend_inputs(ts))

This ledger rule is violated if any of the following violations occur:
* NO-INPUT * DOUBLE-SPEND

* INPUT-NO-IDX * DOUBLE-WITHDRAW
* WITHDRAWN-INPUT

NO-INPUT violation

A transaction t attempted to spend the UTxO i that does not exist or was spent in a previous block.
Formal specification:

3t € txs, i € spend_inputs(t) :
(i ¢ utxoSprev) A
(Bty € txs, t #t1 A tx_hash(ty) = tx_hash(i))
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Fraud proof construction:

1

2.

. Let t be the transaction alleged to violate the ledger rule.

A membership proof must be provided for ¢ that shows that the transaction is included in the
block (t € txs).

. A membership proof for input i must be specified such that i € spend_inputs(t).
. Anon-membership proof must be created to show that i is not in utxosprey.

. A non-membership proof must also be generated that shows that there are no transactions in
txs that have id tx_hash(i).

INPUT-NO-IDX violation

A transaction t attempted to spend the input i, which did not exist at all. Formal specification:

3t € txs, Ji € spend_inputs(t), 3t; € txs:
tx_hash(t;) = tx_hash(i) A i ¢ outputs(ty)

Fraud proof construction:

1

2

3

4

5

. Let t be the transaction alleged to violate the ledger rule.

. A membership proof must be provided for ¢t that shows that the transaction is included in the
block (t € txs)

. A membership proof must be presented for input i such that i € spend_inputs(t)
. A membership proof must be created for t; such that tx_hash(t;) = tx_hash(i)

. A DA layer proof must be presented that certifies that length(outputs(ty)) < index(i)

WITHDRAWN-INPUT violation

A transaction t attempted to spend the input i, which was spent in a withdraw transaction. Formal
specification:

3t € txs, Ji € spend_inputs(t), Iw € wtxs :
i =12 outref(w)

Fraud proof construction:

1

2

3

4

. Let t be the transaction alleged to violate the ledger rule.

. A membership proof must be provided for ¢ that shows that the transaction is included in the
block (t € txs)

. A membership proof must be generated for input i such that i € spend_inputs(t)

. A membership proof must be created to show that w is in wtxs, which also spends input i
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DOUBLE-SPEND violation

A transaction t attempted to spend the input i, which was spent in another transaction. Formal
specification:

3t € txs, Ji € spend_inputs(t), dt; € tx :
t#t A i€ spend.inputs(ty)

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided for t that shows that the transaction is included in the
block (t € txs)

3. A membership proof must be generated for input i such that i € spend_inputs(t)
4. A membership proof must be created to show that ¢; is in txs

5. A membership proof must be given that verifies that i € spend_inputs(t;)

DOUBLE-WITHDRAW violation

A withdrawal w attempted to spend the same input, which was already withdrawn by w;. Formal
specification:

Jw, wy € wtxs :
w#wy; A [2outref(w) =12 outref(wq)

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided for w that shows that the withdraw transaction is
included in the block (w € wtxs)

3. A membership proof must be created to show that w; is in wtxs

5.1.2 Rule: Transaction validity range

Every valid transaction in the ledger must be included at a timestamp that conforms to the validity
range that the transaction prescribes. Formal specification:

Vt € Ledger :
time_range(block(t)) C validity_interval(t)

This ledger rule is violated if any of the following violations occur:

* INVALID-RANGE
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INVALID-RANGE violation

Atransaction t has a time-validity range that does not overlap with its block’s event interval. Formal
specification:

dt € txs :

time_range(b) ¢ validity_interval(t)

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that proves that transaction ¢ is included in the block
b
5.1.3 Rule: At least one input
Every valid transaction in the ledger must spend at least one UTxO. Formal specification:

Vt € Ledger :
|spend _inputs(t)| > 0

This ledger rule is violated if any of the following violations occur:

* ZERO-INPUT

ZERO-INPUT violation

A transaction ¢ is in the ledger and spends no inputs. Formal specification:

dt € txs :

|spend_inputs(t)| =0

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction is included in the
ledger

3. A DA layer proof must be presented that certifies that length(spend_inputs(t)) =0

5.1.4 Rule: Minimum fee

Every valid transaction in the ledger must pay the fees for inclusion. Formal specification:

Vt € Ledger :
tx_fee(t) > min_fee(t)

The fee calculation algorithm is the same as in Cardano ...
This ledger rule is violated if any of the following violations occur:
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* MIN-FEE

MIN-FEE violation

A transaction ¢ is in the ledger, while fee(t) < min_fee(t). Formal specification:

dt e txs:
fee(t) < min_fee(t)

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.
2. A membership proof must be provided that shows that the transaction is included in the
ledger
5.1.5 Rule: Required signatures are correct

Every valid transaction in the ledger must correctly show the required signers. Formal specification:

Vt € Ledger :

(r,u) € utxos
required_signer_hashes(t) = { paymentHK (addr(u)) | r € spend_inputs(t)
addr(u) € Addrvkey

This ledger rule is violated if any of the following violations occur:

* MISSING-REQ-SIGNER-TX * NON-REQ-SIGNER

* MISSING-REQ-SIGNER-UTXO

MISSING-REQ-SIGNER-TX violation

A transaction t; spends a utxo u, produced in the block by transaction t, at a public key address,
without providing the required signature as a witness. Formal specification:

dtq, t; € txs, i € spend_inputs(ty) Ju € outputs(ty) :
(tx_hash(i) = tx_hash(ty)) A
(u = elem_at(outputs(tz),i.index)) A
paymentHK (addr(u)) ¢ required_signer_hashes(ty) A
addr(u) € Addr"<®Y

Fraud proof construction:
1. Let t; be the transaction alleged to violate the ledger rule.
2. A membership proof must be provided that shows that ¢; is included in the block.

3. Let t; be another transaction in the block.
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4. A membership proof must be provided that shows that t; is included in the block.
5. Verify that i € spend_inputs(ty).
6. Verify that i matches t, on transaction hash.
7. Let u be the t; output indexed by i.
8. Verify that the payment credential of u is a public key hash and that it is included in the
required signers of the transaction.
MISSING-REQ-SIGNER-UTXO violation

A transaction t; spends a utxo u from the previous block’s utxo set without providing the required
signature as a witness. Formal specification:

3ty € txs, Ji € spend_inputs(t;) 3(j,u) € utxospre :
(i=jA
paymentHK (addr(u)) ¢ required_signer_hashes(t;) A
addr(u) € Addr"<®Y

Fraud proof construction:
1. Let t; be the transaction alleged to violate the ledger rule.
2. A membership proof must be provided that shows that ¢ is included in the block.
3. Verify that i € spend_inputs(ty).
4. Verify that i matches t; on transaction hash.
5. Let u be a utxo and j be an output reference.
6. A membership proof must be provided that (j, u) € utxospre.
7. Verify that the payment credential of u is a public key hash and that it is included in the
required signers of the transaction.
NON-REQ-SIGNER violation

A transaction t is in the ledger, and it violates the Required signatures” property. Formal specifica-
tion:

3t € txs, Avkey € required_signer_hashes(t), A(r,u) € utxospes :
r € spend_inputs(t) A
paymentHK (addr(u)) = vkey A
addr(u) € Addr'<®Y

Fraud proof construction:

1. Let t be the transaction alleged to violate the ledger rule.
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2. A membership proof must be provided that shows that the transaction ¢ is included in the
ledger

3. A DA layer proof must be presented that shows that for a specified vkey there is no utxo
U € utxospost, such that the address of u corresponds to vkey and t spends u

5.1.6 Rule: Signatures are valid

Every provided signature must be valid. Formal specification:

Vt € Ledger, Y (v, s, h) € addr_tx_wits(t) :

is_valid_signature(v, s, h)

This ledger rule is violated if any of the following violations occur:

* INVALID-SIGNATURE

INVALID-SIGNATURE violation

There exists an invalid signature for transaction t (if indeed the signature (v, s, h) is not valid).
Formal specification:

3t € txs, (v, s, h) € addr_tx_wits(t) :

-is_valid_signature(v, s, h)
Fraud proof construction:

1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction t is included in the
ledger

3. A membership proof must be shown that states that (v, s, h) € addr_tx_wits(t)

5.1.7 Rule: Every needed signature is provided
Every required signature is provided. Formal specification:
Vt € Ledger, Yh € required signer_hashes(t) :
A(v, s, h) € addr_tx_wits(t)
This ledger rule is violated if any of the following violations occur:

* MISSING-SIGNATURE

64
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22



MISSING-SIGNATURE violation

A required signature, corresponding to h is missing. Formal specification:

3t € txs, dh € required_signer_hashes(t) :
h ¢ {hy| (v,s,hp) € addr_tx_wits(t)}

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction t is included in the
ledger

3. A DA layer proof must be shown that states that h € required_signer_hashes(t)

4. A DA layer proof must be presented that shows that a signature with h does not exist

5.1.8 Rule: Native scripts are available
All native scripts are provided. Formal specification:

Vt € Ledger, Yu € output(t) :

addr(u) € Addr'§"™® = (3(h,s) € script_tx wits(t), script_hash(addr(u)) = h)

This ledger rule is violated if any of the following violations occur:

* MISSING-NATIVE-SCRIPT

MISSING-NATIVE-SCRIPT violation

A required script, corresponding to h is missing. Formal specification:

3t € txs, Ju € output(t) :
addr(u) € Addrlgtve a
(A(h, s) € script_tx_wits(t), script_hash(addr(u)) = h)

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction ¢ is included in the
ledger.

3. A membership proof must be generated that proves that u is in outputs(t).

4. A DA layer proof must be shown that certifies that there is no (h, s) curresponding to
script_hash(addr(u)) = hin script_tx_wits(t).
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5.1.9 Rule: Native scripts validated

All native scripts validations pass. Formal specification:

Vt € Ledger, VY(h,s) € script_tx_wits(t) :

native_validation_succeeds(s,t)

This ledger rule is violated if any of the following violations occur:

* NATIVE-SCRIPT-INVALID

NATIVE-SCRIPT-INVALID violation

A native script s validation fails. Formal specification:

3t € txs, A(h,s) € script_tx_wits(t) :

—native_validation_succeeds(s,t)

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction ¢ is included in the
ledger.

3. A DA layer proof must be shown that certifies that (h, s) exists in script_tx_wits(t).

4. The native_validation_succeeds(s, t) fails.
5.1.10 Rule: Value preservation
The total value must be preserved. Formal specification:
Vt € Ledger :
mint(t) + Z value(spend_inputs(t)) = fee(t) + Z value(outputs(t))
This ledger rule is violated if any of the following violations occur:

* VALUE-NOT-PRESERVED

VALUE-NOT-PRESERVED violation

Value is not preserved in transaction t. Formal specification:

dt € txs:

mint(t) + Zvalue(spend,inputs(t)) # fee(t) + Zvalue(outputs(t))

Fraud proof construction:
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1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction ¢ is included in the
ledger.

3. A DA layer proof must be shown that certifies the value of sum(spend_inputs(t)).
4. A DA layer proof must be created that states the value of sum(outputs(t)).

5. The sums in the calculation must show a discrepancy.

5.1.11 Rule: No Ada minted

Ada must not be minted. Formal specification:

Vt € Ledger :

lovelaces(mint(t)) =0

This ledger rule is violated if any of the following violations occur:

* ADA-MINTED

ADA-MINTED violation

Ada is minted in transaction t. Formal specification:

dt e txs :

lovelaces(mint(t)) # 0

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction t is included in the
ledger.

3. lovelaces(mint(t)) # 0

5.1.12 Rule: No negative value
All output values must be greater or equal to zero. Formal specification:
Vt € Ledger :
(Yo € outputs(t), value(o) > 0)
This ledger rule is violated if any of the following violations occur:

* NEGATIVE-OUTPUT-VALUE
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NEGATIVE-OUTPUT-VALUE violation

Ada is minted in transaction t. Formal specification:

3t € txs, Jo € outputs(t), Im € Policy, Jtn € TokenName :

value(0)m tn <0

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided that shows that the transaction t is included in the
ledger.

3. A membership proof must be generated that states that o € outputs(t).
4. A minting policy id m and a token name tn must be shown, such that the quantity of (m, tn)
tokens in o is negative.
5.1.13 Rule: Minimum UTxO value

All output values must adhere to the same minimum ada value requirements that exists on Cardano.
Formal specification:

Vt € Ledger, Yo € outputs(t) :

lovelaces(value(o)) > min_ada_-value(o)

This ledger rule is violated if any of the following violations occur:

* MIN-ADA-TX * MIN-ADA-UTXO

MIN-ADA-TX violation

An output of a transaction t does not satisfy the minimum Ada value requirement. Formal specifi-
cation:

3t € txs, Jo € outputs(t) :

lovelaces(value(o)) < min_ada_value(o)

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.
2. A membership proof must be provided that shows that t € txs.
3. A membership proof must be provided that shows that o € outputs(t).

4. lovelaces(value(o)) < min_ada_value(o) must hold.
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MIN-ADA-UTXO violation

A utxo u in a block’s utxo set does not satisfy the minimum Ada value requirement. Formal
specification:

du € utxospost :

lovelaces(value(u)) < min_ada_value(u)

Fraud proof construction:
1. Let u be the utxo alleged to violate the ledger rule.
2. A membership proof must be provided that shows that u € utxospos:.

3. lovelaces(value(u)) < min_ada_value(u) must hold.

5.1.14 Rule: Network id of outputs

All output addresses must have the correct network id. Formal specification:

Vt € Ledger, Yo € outputs(t) :

network_id(addr(0)) = network_idysidagara

This ledger rule is violated if any of the following violations occur:

* OUTPUT-NETWORK-UTXO * OUTPUT-NETWORK-TX

OUTPUT-NETWORK-TX violation

An output of a transaction t has a wrong network id. Formal specification:

3t € txs, Jo € outputs(t) :

network_id(addr (o)) # network_idwyidgard

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.
2. A membership proof must be provided that shows that ¢ € txs.
3. A membership proof must be provided that o € outputs(t).

4. network_id(addr(o)) # network_idpsiggara Must hold.
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OUTPUT-NETWORK-UTXO violation

A UTxO u address has a wrong network id. Formal specification:

Ju € utxospost -

network_id(addr(o)) # network_idyidgara

Fraud proof construction:
1. Let u be the output alleged to violate the ledger rule.
2. A membership proof must be provided that shows that u € utxosys:.

3. network_id(addr(0)) # network_idpsiqgara Must hold.

5.1.15 Rule: Network id of transaction
All transactions must have the correct network id. Formal specification:

Vt € Ledger :

network_id(t) = network_idyidgara

This ledger rule is violated if any of the following violations occur:

* TRANSACTION-NETWORK

TRANSACTION-NETWORK violation
A transaction ¢ has a wrong network ID. Formal specification:

dt e txs:

network_id(t) # network_idyiqgard

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.
2. A membership proof must be provided that shows that ¢ € txs.

3. network_id(t) # network_idyiqgara must hold.

5.1.16 Rule: All reference inputs must be valid

A transaction can only reference utxos that were produced by transactions that do not follow
the transaction in the ledger’s order, and it cannot reference utxos that were spent in preceding
transactions. Formal specification:

Vt € Ledger, Vr € reference_inputs(t) :
(3ty € Ledger, t1 st A T € outputs(ty)) A
(At € Ledger, t, <t A 1 € spent_inputs(ts))

This ledger rule is violated if any of the following violations occur:
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* NO-REFERENCE-INPUT * REFERENCE-INPUT-NO-IDX

NO-REFERENCE-INPUT violation

A transaction ¢t attempted to spend the UTxO i that does not exist or was spent in a previous block.
Formal specification:

3t € txs, Jdi e reference_inputs(t) :
(i ¢ utxosprev) A
(Aty € txs, t # t; A tx_hash(ty) = tx_hash(i))

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.
2. A membership proof must be provided for ¢ that shows that ¢ € txs.
3. A membership proof for input i must be provided such that i € reference_inputs(t).
4. A non-membership proof must be provided to show that i ¢ utxospyey.
5. A non-membership proof must also be generated that shows that no transactions in the block
match the input’s tx hash.
REFERENCE-INPUT-NO-IDX violation

A transaction t attempted to spend an input i that was not produced by the transaction matching
the tx hash of i. Formal specification:

3t € txs, Ji € reference_inputs(t) :
(3ty € txs, tx_hash(ty) = tx_hash(i) A length(outputs(t;) < index(i))

Fraud proof construction:
1. Let t be the transaction alleged to violate the ledger rule.

2. A membership proof must be provided for ¢ that shows that the transaction is included in the
block (t € txs)

3. A membership proof must be presented for input i such thati € reference_inputs(t)
4. A membership proof must be created for t; such that tx_hash(t,) = tx_hash(i)

5. A DA layer proof must be presented that certifies that length(outputs(t,)) < index (i)
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5.2 Custom Midgard ledger rules

5.2.1 Rule: Is valid

5.2.2 Rule: No auxiliary data

5.2.3 Rule: Certificates empty
5.2.4 Rule: Only zero withdrawals

5.2.5 Rule: No mints
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5.3 Data availability rules

5.3.1 Rule: Transaction count correct
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Chapter 6

Offchain data architecture

Midgard operators only commit block headers to the L1 state queue. They store their actual
blocks temporarily in Midgard’s data availability layer for at least the maturity period, and then
permanently on Midgard’s archive nodes.

6.1 Data availability layer

The data availability layer is critical to Midgard’s security because every committed block needs to
be publicly available throughout the maturity period so that watchers can detect and prove fraud
before invalid blocks are merged.

We are considering three solutions for the data availability layer (in decreasing preference):
1. Cardano Leios blobs (the ideal solution)

2. Multi-signature committees

6.1.1 Data availability via Leios blobs

The ideal data availability solution for Midgard is based on Cardano Leios blobs, which are a
proposed feature in Cardano that will support large-scale transient data storage secured via L1
consensus.

The contents of these blobs do not have to be verified by Cardano’s Ouroboros consensus protocol,
and they only have to be stored for up to 30 days. This means that a large amount of data can be
stored in these blobs sustainably for a low cost, which we expect to be several orders of magnitude
lower than Cardano’s cost for transaction metadata (which is stored permanently).

Leios blobs are a natural intermediate point on Leios’ multi-year roadmap toward full input-
endorser capabilities. We believe that they are achievable before Midgard’s planned deployment
on mainnet, and we will support the Leios team to help bring them to Cardano sooner.

In the Leios-based data availability solution for Midgard, operators will pay to store their full
non-Merkelized blocks inside Leios blobs for the full maturity period. Leios itself will provide
timestamps and (non-Merkle) hashes for the blobs and ensure that the blob contents are accessible.
Midgard’s L1 smart contracts will be able to access the timestamps and non-Merkle hashes of blobs
directly.

74
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22



The block data inside each Leios blob will be sufficient to be converted offchain into the Merkelized
representation of Midgard blocks that is necessary to construct fraud proofs. The correspondence
between the non-Merkelized block data stored in the Leios blob and the Merkle root hash declared in
the block header will be verifiable via a special fraud proof verification procedure. This procedure
will calculate the Merkle root hash in a streaming fashion over the block data and compare it to the
declared Merkle root hash in the block header.

We hope to further streamline this Merkle root hash verification procedure by collab-
o orating with the Cardano Leios and Plutus teams to make it a Plutus builtin operation.
This builtin can be much more expensive than typical Plutus built-ins, and Midgard
fraud provers will be happy to pay the cost because the stakes of DA fraud and the
reward for proving it are much higher. Nonetheless, this will not impose an ongo-
ing cost burden on Midgard because this verification procedure will not need to be
invoked during normal operation with honest blocks, and invalid blocks will be rare.

Operators’ costs for storing blocks in Leios will be offset by the revenue they collect from Midgard
transaction, deposit, and withdrawal fees. Furthermore, the Leios blob storage fees will become an
additional source of revenue for Cardano L1 block producing nodes, further boosting the economic
security of Cardano L1 on which Midgard depends.

6.1.2 Data availability via Mithril

If Leios blobs are unavailable on Cardano mainnet in time for Midgard’s deployment, a viable
alternative is using stake-weighted Mithril certificates to ensure data availability.

The Mithril whitepaper states that it was specifically designed to address the data-availability
problem:

(19

Mithril provides an immediate solution to the data-availability problem: if the

underlying consensus protocol is run on references for which a Mithril signature

exists, data availability is (cryptographically) guaranteed. 9
In this approach, a state commitment is only considered valid if it is accompanied by a Mithril
certificate signed by a stake-weighted quorum of Mithril participants. This certificate represents
the Mithril participants’ collective claim that the necessary block data is publicly available.

Midgard’s L1 consensus protocol is adapted as follows:

1. Publishing Data: When the current operator wishes to commit a new block header to the
state queue, they must publish the block’s full data at a publicly accessible location. This data
must be sufficient to reconstruct the Merkle roots referenced by the block header.

2. Verification by Mithril Participants: Each Mithril participant monitors the publicly accessi-
ble location. When a new block is published, the Mithril participant independently retrieves
the block’s data and verifies that:

* The data is available.

* It corresponds exactly to the Merkle roots in the state commitment.

75
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22



3. Signing the Certificate: If the block’s data meets these conditions, the Mithril participant
signs the Mithril certificate and broadcasts the signature to the Mithril aggregators.

4. Onchain Verification: The Midgard state queue requires every new block header to be
appended with an associated Mithril certificate signed by Midgard’s quorum for the Mithril-
based DA. Midgard’s da_ multisig threshold parameter sets this quorum threshold.

By leveraging Mithril, Midgard ensures that state commitments are only accepted when their
corresponding block data is provably available. This mechanism safeguards Midgard against data-
availability fraud, where a malicious operator attempts to submit a state commitment without
disclosing the underlying data. Without access to this data, fraud provers would be unable to
construct and submit fraud proofs, allowing the fraudulent state commitment to become canonical
once the fraud detection window closes. By requiring a Mithril certificate before a state commitment
is appended, Midgard guarantees that the data remains accessible, preserving the system’s integrity.

A key difference between the Leios blob and Mithril-based data availability (DA) solutions lies in
the security guarantees each approach provides. In the Leios blob solution, data availability is
assured with the full security of Cardano’s consensus, meaning that all active stake on the network
contributes to securing DA, just as it does for transaction finality and block production. Thus, any
attempt to suppress or manipulate stored data would require an adversary to control a majority of
Cardano’s total stake, making attacks highly impractical. In contrast, the Mithril-based DA solution
relies on a subset of Cardano’s stake—specifically, the stake controlled by SPOs (Stake Pool Operators)
running Mithril or, equivalently, the total stake actively participating in Mithril. While this still
provides strong cryptographic guarantees, it does not benefit from the full economic security of
Cardano’s entire stake-weighted consensus, making it theoretically more susceptible to adversarial
control if a sufficiently large fraction of the Mithril-active stake colludes or becomes compromised.

This difference in security between the Leios blob and Mithril-based data availability (DA) solutions
is alleviated as more SPOs participate in Mithril. As the number of SPOs running Mithril nodes
grows, an increasing proportion of Cardano’s total stake becomes actively involved in securing the
DA, thereby increasing the overall economic security of the Mithril-based approach. As Mithril
approaches universal adoption among Cardano’s SPOs, the Mithril-based DA solution’s resilience
converges to that of the Leios blob-based DA solution. At the limit, they are equivalent because the
same stake-weighted economic security backs both.

Therefore, broad participation in Mithril among Cardano SPOs is key to minimizing any security
gap between the two approaches.

6.2 Archive node

Midgard’s archive nodes will store the block data for confirmed blocks. Security properties are
easier to achieve for this historical data because, at all times, Midgard’s confirmed state utxo
contains a chained header hash that pins the entire historical chain of confirmed blocks. There can
be no disagreement about different versions of this data—an archive node either stores data that
corresponds to the confirmed state header hash, or it does not.

We expect all operators to keep a copy of the latest confirmed block’s utxo set because it is necessary
for them to create honest blocks and avoid being slashed for fraudulent blocks. They are incentivized
to do so by the fee revenue they earn on Midgard. This utxo set and the block data stored in the data
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availability layer provide Midgard with the minimum information necessary to continue producing
blocks.

We expect indexers and other professional service providers to store copies of the Midgard historical
data. Midgard’s security and ongoing block-production capability does not depend on this historical
data. However, we expect it to be stored to the extent that users are willing to pay for this service.
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Chapter 7

Phase Two Validation

Phase two validation represents the critical stage in Midgard’s transaction processing where UPLC
script evaluation occurs.

7.1 Overview

Phase two validation serves several key purposes:

Validates the execution of UPLC scripts attached to transactions
* Ensures computational bounds are respected
* Maintains verifiable execution traces for fraud proof construction
* Enables efficient dispute resolution through progressive state hashing
The validation process consists of three main components:
1. State representation and management
2. Off-chain script decoding and preparation
3. Execution validation and fraud proof mechanisms

Each component is designed to maintain verifiability while optimizing for L2 performance con-
straints. The following sections detail these components and their interactions within the Midgard
protocol.

7.1.1 Validation Requirements

For a transaction to pass phase two validation:

All scripts must be successfully decoded from their byte representation

 Script execution must complete within specified resource bounds

All state transitions must be cryptographically verifiable

» Execution traces must enable efficient fraud proof construction
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7.2 State Representation

This section describes how the state is represented during phase two validation, including the data
structures and encoding methods used for UPLC evaluation.
7.2.1 Term Representation

The UPLC Term representation uses progressive hashing to maintain compact state while preserving
verifiability:

Term := Variable(Name)
| Lambda(Name, Hash)
| Apply(Hash, Hash)
| Constant(Hash)
| Force(Hash)
| Delay(Hash)

| Builtin(BuiltinFunction)

Each Hash in the Term representation refers to another Term that has been previously processed
and hashed. This creates a directed acyclic graph (DAG) of Term components where larger structures
are decomposed into their constituent parts.

For example, a lambda expression like Ax.Ay.[ yx] would be represented as:
* A Lambda node containing (x, hy)
* Where h; is the hash of a Lambda node containing (y, hy)
» Where h; is the hash of an Apply node containing (hs, hs)
* Where hs is the hash of a Variable node containing y

* Where hy is the hash of a Variable node containing x

7.2.2 Decoding Steps

The conversion from flat-encoded script bytes to the final Term follows a sequence of BytesToTermSteps:

remaining bytes : ScriptBytes
BytesToTermStep := .
partial term : Term
Each step represents an atomic transformation in the decoding process, with the decoding_step_proof
enabling independent verification of that specific step.
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7.2.3 Execution Steps

The execution state during UPLC evaluation is represented by the CEK machine state:

term_hash : Hash
CEKState := 4 env: Environment
continuation : Continuation

Each execution step produces a new CEK state and tracks execution units consumed:

before_state : CEKState
ExecutionStep := { after_state : CEKState
execution_units : ExecutionUnits

7.2.4 Execution Trace

The complete execution trace combines the bytes-to-term conversion and CEK machine evaluation.
In the following, we use the notation RH to indicate a root hash of a Merkle-Patricia tree.

bytes_to_term_steps : RH ([BytesToTermStep])
ExecutionTrace := § initial state : CEKState
steps : RH ([ExecutionStep])

The execution trace is stored in transaction witness sets:

MidgardTxWits :={
& { execution_traces : ? RH (Map(RdmrPtr, ExecutionTrace)) }

This representation allows any step of the trace to be independently verified without requiring
access to the complete execution history, enabling efficient fraud proof construction and validation.

7.3 Off-chain Decoding

This section details the process of decoding UPLC script bytes into executable Terms during phase
two validation.

7.3.1 Byte Format Specification

UPLC scripts are serialized using the flat format, which provides a compact binary representation
optimized for blockchain storage. The format consists of:

* Version number (majorminor.patch) encoded as three natural numbers

* Term structure encoded as tagged bit sequences

Constants encoded based on their type (integers, bytestrings, etc.)
* Built-in functions encoded as 7-bit tags

* De Bruijn indices for variable references

« Padding bits to ensure byte alignment
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7.3.2 Decoding Process
The decoding process follows these key steps:
1. Read and validate the version number
2. Parse the term structure by interpreting tag bits:
* 0011 - Application
* 0100 - Constants
* 0111 - Built-in functions
. etc.
3. Decode constants according to their type tags
4. Resolve built-in function references via their 7-bit tags

5. Construct the final term tree

7.3.3 Term Construction Process

The decoder maintains state during term construction:

step_type : DecodingStepType
input_bytes : ScriptBytes

BytesToTermStep := { remaining bytes : ScriptBytes
partial term : Term

transformation_proof: Hash

7.3.4 Decoding Step Types

The DecodingStepType represents the specific transformation being performed:

VersionDecode : (major, minor, patch)
TermTagDecode : TagBits
TypeTagDecode : [TypeTag]
ConstantDecode : Type X Value
BuiltinDecode : BuiltinTag
PaddingValidate : PaddingBits

DecodingStepType =
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7.3.5 Transformation Proofs

Each step’s transformation_proof must demonstrate:
* Valid consumption of input bytes according to the format specification
* Correct interpretation of decoded values
* Proper handling of any padding or alignment requirements
* Maintenance of the well-formed term structure
For example, a ConstantDecode proof must show:
* The type tag list was properly terminated
* The constant value matches its declared type
* Any required padding was correctly handled

* The remaining bytes are properly aligned

7.3.6 Validation Chain

The complete decoding process produces a sequence of BytesToTermSteps that can be independently
verified. This enables:

* Detection of malformed script bytes
+ Identification of specific decoding failures
* Construction of fraud proofs for invalid transformations

« Verification of the complete decoding process

7.3.7 Transformation Types

Different term types require specific decoding transformations:
* Constants - Decoded based on type tags and specific encoding rules
* Applications - Recursively decode function and argument terms
¢ Built-ins - Lookup via 7-bit tag table

* Variables - Convert de Bruijn indices to term references

7.3.8 Validation Requirements

The decoder must enforce several validation rules:

 Version compatibility check

Well-formed term structure

* Valid constant values

* Recognized built-in functions

* Proper scope for de Bruijn indices

* Complete byte consumption (no trailing data)
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7.4 Fraud Proofs in UPLC Evaluation

This section details the fraud proofs involved in UPLC evaluation, focusing on single-step verification
of state transitions.
7.4.1 Types of Fraud Proofs
The system supports these categories of fraud proofs:
Decoding Fraud Proofs of invalid script byte decoding:
* Invalid byte format
* Size limit violations
» Reference resolution failures
Execution Fraud Proofs of invalid UPLC execution:
* Resource limit violations
* Invalid state transitions

* Incorrect execution results

7.4.2 Single-Step Verification

The fraud proof system verifies individual state transitions:

Vs1, Sy € CEKState : claimed_transition(s; — s;) valid <

compute_next _state(s;) = s

To prove a violation:
* The operator provides the claimed before state (s1) and after state (s3)
* The challenger computes the actual next state from s;
¢ If the computed state differs from s,, the transition is invalid

* No additional trace information is required

7.4.3 Proof Data Structure

The fraud proof structure is minimal:

step_-number : N

before_state : CEKState
claimed_after_state : CEKState
actual_after_state : CEKState

FraudProof =
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7.4.4 Verification Process
The verification process is straightforward:
1. Verify the before state matches the operator’s claim
2. Compute one step from the before state
3. Compare computed result with operator’s claimed after state

4. If they differ, the fraud proof is valid

7.4.5 Security Considerations
The single-step verification approach provides several benefits:
* Minimal proof size
* Constant-time verification
* No complex challenge periods needed
* Deterministic outcomes
Security guarantees include:
* No false positives (valid transitions cannot be proven invalid)
* No trace reconstruction required
* Immediate verification of claims

* Protection against computational waste attacks
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Appendix A

General onchain data structures and
mechanisms

This appendix describes general-purpose data structures and mechanisms that can be used for
various applications on Cardano. They are designed to be as simple and flexible as possible, and
they do not depend on any specifics of the Midgard protocol.

A.1 Linked list

The linked list is a versatile data structure that can implement sets, queues, key-value maps, lazy
data sequences, and other interesting data structures. It is particularly useful in the extended UTXO
model of the Cardano blockchain, where many list operations and queries can be validated onchain
within minimal local contexts that do not grow with list size. Meanwhile, offchain queries can
access any part of the list via beacon NFTs that pinpoint specific list nodes.

We describe two types of linked lists:

* The key-unordered linked list is a cheaper/simpler variant that only allows nodes to be
appended at the end of the list and does not enforce the order of keys in the list. It can be used
to implement queues and other sequential data structures. However, appending to a list is a
sequential operation, which is unsuitable for applications that need multiple independent
actors to grow the list simultaneously.

* The key-ordered linked list allows nodes to be inserted anywhere in the list, but it applies
additional rules to maintain the key-ascending order of nodes. It can be used to implement sets
and key-value maps. List insertion is increasingly parallel as the list grows, so the key-ordered
linked list is well-suited to applications with multiple independent actors growing the list (see
Section A.1.12).

A.1.1 Utxo representation

Each linked list, whether key-ordered or key-unordered, is represented in the blockchain ledger
as a collection of node utxos that hold node NFTs minted by the list’s minting policy and are held
under the list’s spending validator. The spending validator is parameterized by the minting policy,
and the minting policy is parameterized by the utxo reference of one of the spent inputs in the
transaction that initializes the list.
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Each node utxo of a list uniquely corresponds to some ByteArray key and holds a node NFT with a
token name equal to that key’s serialization. The key-ordered list’s state transitions guarantee that
all nodes have unique keys, but the key-unordered list’s state transitions only assume that keys are
unique.

A

Every node utxo has a datum of the NodeDatum type, which is parametric on the app_data type of
the non-key data that is to be stored in the list nodes:

An application using a key-unordered list MUST only add nodes with unique keys to
the list. Duplicate keys break the linked list data structure.

key :  Option(ByteArray)
NodeDatum(app-data) := { link: Option(ByteArray)
data: app-data

The key field indicates the node’s key (or None for the root node). * It must match the token name
of the node’s NFT when serialized:?

serialize_key(None) := “Node”

serialize_key(Some(key)) := concat(“Node”, key)

The root node of a list is the only node with a key field value of None in its NodeDatum and its NFT
token name set to ¢ ‘Node’’. The root node is created when a list is initialized and must continue
to exist until the list is deinitialized. This allows an initialized but empty list to be represented by
just its root node (and no other nodes). The non-root nodes represent the actual keys and data of
interest within a non-empty list.

The link field is a link to the next key that a forward traversal through the list must visit after
visiting the current node. Alternatively, the 1ink field can be interpreted as the previous key that a
backward traversal through the list has visited before the current node. The last node is the only
node with a 1ink field value of None because forward traversal through the list must end after this
node (backward traversal must start at this node).

The data field is parametric on the app_data type set by the application that instantiates the list. It
is reserved for use by the application’s custom onchain code.

A.1.2 Linked list library structure

The linked list library provides a collection of rules that enforce the baseline behavior of linked
lists. An application using the list data structure should invoke one of these rules whenever it
needs a particular linked list operation to occur within the context of the application’s custom state
transitions.

IThe key field is redundant, as it is already represented in the node NFT, but we include it in the datum for convenience
in onchain scripts and offchain analytics.

Zprefixing the key when it is serialized to the token name prevents a collision between the root node and a node with
an empty key string. It also allows more flexibility for minting policies that use the linked list library to atomically mint
additional tokens associated with the key but namespaced from the node NFTs. Alternatively, if this functionality is not
needed, the “Node” prefixes can be removed from the serialization.
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Linked list rules are predicate functions that can be freely composed with any custom application
rules via logical conjunction. In this way, while the linked list rules control which operations can
be performed on a list and how they must be performed, applications can apply further constraints
on the circumstances under which the operations are allowed.

The state transition rules control how lists are initialized/deinitialized and how nodes are added/re-
moved from the list. These rules should be invoked in the application’s minting policy for the list
because every state transition of the list changes the number of list nodes, so it must necessarily
mint or burn node NFTs.

The state integrity rules ensure that node NFTs stay in their respective node utxos until burned and
that the key and 1ink fields remain unchanged outside of linked list state transitions. These rules
should be invoked in the application’s spending validator for the list.

Neither the state transition nor the state integrity rules inspect the data field of node utxos, nor do
they inspect the value held by node utxos besides node NFTs. Applications are free to use these as
they wish.

Section A.1.10 describes how to instantiate a linked list within an application and compose the
linked list rules with custom app rules.
A.1.3 State integrity rules

The state integrity rules distinguish between transactions that apply linked list state transitions
and transactions that merely modify the data field or non-node-NFT value of a node utxo.

List State Transition. This rule allows a node utxo to be spent in any transaction that applies a
state transition to the list. Conditions:

1. Tokens of the list’s minting policy must be minted or burned.

Modify Data. This rule ensures that the node NFT, the key field, and the 1ink field remain
unchanged in any transaction that does not apply a state transition to the list. It achieves it as
follows:

1. Tokens of the list’s minting policy must not be minted or burned.
2. Let own_input be the node utxo input for which this rule is being evaluated.

3. Let own_output be an output of the transaction indicated by a redeemer argument of
the spending validator.

4. The node NFT of the list must be present in own_input.
5. The value must match in own_input and own_output.
6. The key and 1ink fields must match in own_input and own_output.

To keep the onchain code simple and efficient, this rule can only handle content modifications
to one node utxo per list. In principle, this could be generalized to handle bulk modifications
of node contents, but that would require more expensive computations to match node inputs
with node outputs.
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A.1.4 List subcontext for state transition rules

State transition rules of a linked list are only concerned with a transaction’s effects on the list’s
node utxos. Consequently, they focus on the following linked list subcontext, which is a subset of
the overall transaction context:

* node_cs is the minting policy ID of the list.
* node mint is the map of tokens of the list’s minting policy that were minted or burned.

* node_inputs are the transaction inputs that hold node NFTs of the list and datums that parse
as NodeDatum.

* node_outputs are the transaction outputs that hold node NFTs of the list and datums that
parse as NodeDatum.

The state transition rules ignore the rest of the transaction context, which does not affect the
state of the list. However, applications invoking the state transition rules are free to consider the
whole transaction context to constrain the circumstances under which they allow linked list state
transitions to occur.

A.1.5 Node and key predicates

The following predicate functions characterize nodes and keys in a linked list subcontext relative
to the global state of the list.

Root node. The root node of the list:

is_-root_node(node) := (node.datum.key = None)

Last node. The last node of the list:

is_last_.node(node) := (node.datum.link = None)

Empty list. The list is empty if its root node is also its last node:

is_root_node(node) A is_last_node(node)

Key added. The transaction only affects the list by adding the given key:

key_added(key, node_cs, node_mint) = (without,lovelace(node,mint)

= from_asset(node_cs, serialize_key(key), 1))

Key removed. The transaction only affects the list by removing the given key:

key_removed(key, node_cs, node_mint) := (without,lovelace(node,mint)

= from_asset(node_cs, serialize_key(key), —1))
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Key membership. The given key is a member of the list, proved by the existence of a witness
node that satisfies the following predicate for the key.

is_.member(key, node) := (key = node.datum.key)

» When the above predicate is satisfied by a transaction input, it means that the key is a
member of the list immediately before the transaction.

* When the above predicate is satisfied by a transaction output, it means that the key is a
member of the list immediately after the transaction.

Key non-membership (ordered lists only!). The given key is not a member of thelist, as proved
by the existence of witness a node that satisfies the following predicate for the key:

is_.non_member(None, _node) := False
is_non_member(Some(key), node) :=

(is,root,node(node) V (node.datum.key < Some(key)))

A (is,last,node(node) V (Some(key) < node.datum.link))

» When the above predicate is satisfied by a transaction input, it means that the key is not
a member of the list immediately before the transaction.

* When the above predicate is satisfied by a transaction output, it means that the key is
not a member of the list immediately after the transaction.

In human terms, the key non-membership proof describes four possible scenarios in which a
key is not a member of a key-ordered list:

1. The list is empty.

2. The root node links to a node with a higher key than the given key, which precludes the
given key’s membership because all subsequent nodes visited after this node will have
monotonically increasing keys.

3. The last node has a key lower than the given key, which precludes the given key’s
membership because all nodes visited before the last node have even smaller keys.

4. A non-root non-last node has a lower key but links to a higher key than the given key,
which precludes the given key’s membership because all nodes before this node have
smaller keys, and all nodes after this node have larger keys.

For a key-unordered list, the only way to prove the non-membership of a key is to iterate over
the entire list in the transaction inputs, which quickly becomes infeasible for lists larger than
the empty list. The is_non _member predicate does not apply to key-unordered lists.
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A.1.6 Indexing into a list

The main way to index into a list is by key. Every linked list, whether key-ordered or key-unordered
(if its keys are unique), has a canonical surjective mapping from its domain of all possible keys onto
the nodes it contains:

 If a given key is a member of the list, it is mapped to the node that proves its membership.
* Otherwise, the key is mapped to the node that proves its non-membership.

In the offchain context, indexing by key requires traversing the list to the node that proves the
key’s membership or non-membership. However, indexing by key is cheap in the onchain context
because only that single node needs to be an input to the transaction.

The other way to index into a list is by position, which requires traversing the list to the node at
that position in both the offchain and onchain contexts. The root and last nodes are the cheapest to
reach because they intrinsically define their positions within the list, so inspecting any other nodes
is unnecessary.

The first and second-last nodes are the next cheapest to reach because they are adjacent to the root
and last nodes, respectively. This means that the root node must be an input when indexing into
the first node, while the last node must be an input when indexing into the second-last node. The
farther a node is from the root or last node, the larger this chain of inputs grows to establish its
position in the list.

A.1.7 Onchain traversal of a list

In the onchain context, read-only traversal through a list is more efficient backwards than forwards
when the only thing that the traversal needs to know about the previously visited node is its key. In
that case, backward traversal only needs the current node to be a transaction input because the
current node’s 1ink field matches the key of the previously visited node.

By contrast, read-only forward traversal requires both nodes to be transaction inputs because it
only knows which node it should be visiting by inspecting the previously visited node’s 1ink field.
Of course, the traversal state could instead keep a copy of the 1ink field of the previously visited
node, but that copy can become stale if the list is not kept immutable during the traversal.

On the other hand, forward traversal is more efficient when the list is destructively folded into an
accumulator that is stored at the root node. In that case, the root node needs to be updated anyway,
and it always points to the next node that the traversal should visit.

A.1.8 Key-unordered linked list

The key-unordered linked list data structure does not keep its nodes ordered by their keys. This
means that a new node cannot be added to the list based on its key because the list does not require
the key to be positioned after any particular node in the list.

This leaves only adding new nodes to the list at specific absolute positions. We restrict these
positions even further to just the beginning and end of the list because other positions would
require increasingly larger chains of reference inputs to establish the new node’s position.

Therefore, the key-unordered linked list data structure allows new nodes to be added to the begin-
ning or end of the list, while non-root nodes can be removed anywhere in the list. It enforces the
following properties:
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1. The root node exists continuously until the list is initialized.
2. If the keys in the list are unique, then each node has only one node linking to it.

3. If the keys in the list are unique, then traversal through the list is deterministic.

State transition rules
Init. Initialize an empty list. Conditions:

1. The transaction’s sole effect on the list is to add the root key.

key_added(None, node_cs, node_mint)

2. The list must be empty after the transaction, as proved by an output root_node that
holds the minted root node NFT.

is_empty_list(root_node) A has_token(root_node, node_cs, “Node”’)

3. The root_node must not contain any other non-ADA tokens.
The above conditions imply the following:

* node_outputs must be a singleton. This is implied by the list being empty after the
transaction, the root node NFT being minted, and no other node tokens being minted or
burned.

* node_inputs is empty. This is implied by the root node NFT of the list being minted in
the transaction. If list keys are unique, no other node can exist before the root node. This
is enforced by the other state transition rules, which (inductively) require the existence
of the root node before and after any other node NFTs are created or burned.

The Init rule cannot enforce that the root node utxo is sent to the spending validator that
contains the state integrity rules of the list because that spending validator is parametrized
on the minting policy that includes the Init rule.

Offchain code for the list-initialization transaction MUST send the root node to
the list’s spending validator. Otherwise, the linked list can be corrupted.

Deinit. Deinitialize an empty list. Conditions:

1. The transaction’s sole effect on the list is to remove the root key.

key_removed(None, node_cs, node_mint)

2. The list must be empty before the transaction, as proved by an input root_node that
holds the minted root node NFT.

is_empty_list(root_node) A has_token(root_node, node_cs, “Node”)
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The above conditions imply the following:
* node_inputs mustbe a singleton. This is implied by the empty list before the transaction.

* node_outputs must be empty. This is implied by the condition that the root node NFT
is burned and that no other node tokens are minted or burned.

Prepend (unsafe). Prepend a new node to the beginning of the list. Grouped conditions:
* Verify the mint:
1. Let key_to_prepend be the key being prepended.

2. The transaction’s sole effect on the list is to add key_to_prepend.

key_added(key_to_prepend, node_cs, node_mint)

* Verify the inputs:
3. node_inputs must be a singleton. Let anchor node_input be its sole node.
4. anchor_node_input must be the root node of the list.
* Verify the outputs:
5. node_outputs must have exactly two nodes:
— prepended_node
— anchor_node_output

6. key_to_prepend must be a member of the list after the transaction, as witnessed
by prepended node.

is_member(key_to_prepend, prepended_node)

7. anchor node_input and prepended _node must match on the 1ink field. In other
words, they must both link to the same key.

8. anchor node_output mustlink to key_to_prepend.
9. prepended _node must not contain any other non-ADA tokens.
* Verify immutable data:

10. anchor node_input must match anchor node_output on address, value, and da-
tum except for the 1ink field.

11. prepended _node must match anchor node_output on address.

This rule is considered unsafe because it does not enforce key uniqueness or key order in the
list. It merely assumes that the key being prepended is unique.

A

An application using a key-unordered list MUST only add nodes with unique
keys to the list. Duplicate keys break the linked list data structure.
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Append (unsafe). Append a new node to the end of the list. Conditions:
* Verify the mint:
1. Let key_to_append be the key being appended.

2. The transaction’s sole effect on the list is to add key_to_append.

key_added(key_to_append, node_cs, node_mint)

* Verify the inputs:
3. node_inputs must be a singleton. Let anchor_node_input be its sole node.
4. anchor_node_input must be the last node of the list before the transaction.
* Verify the outputs:
5. node_outputs must have exactly two nodes:
— appended_node
— anchor_node_output

6. key_to_append must be a member of the list after the transaction, as witnessed by
appended_node.

is_-member(key_to_append, appended_node)

7. appended_node must be the last node of the list after the transaction.

8. anchor node_output mustlink to key_to_append.

9. appended node must not contain any other non-ADA tokens.
 Verify immutable data:

10. anchor_node_input must match anchor node_output on address, value, and da-
tum except for the 1ink field.

11. appended_node must match anchor_node_output on address.

This rule is considered unsafe because it does not enforce key uniqueness or key order in the
list. It merely assumes that the key being appended is unique.

A

Remove. Remove a non-root node from the list. Conditions:

An application using a key-unordered list MUST only add nodes with unique
keys to the list. Duplicate keys break the linked list data structure.

* Verify the mint:

1. Let key_to_remove be the key being removed.
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2. The transaction’s sole effect on the list is to remove key_to_remove.

key_removed(key_to_remove, node_cs, node_mint)

* Verify inputs:
3. node_inputs must have exactly two nodes:
— removed_node
— anchor_node_input

4. key_to_remove must be a member of the list before the transaction, as witnessed
by removed_node.

is_-member(key_to_remove, removed_node)

5. anchor node_input mustlink to key_to_remove.
* Verify outputs:
6. node_outputs must be a singleton. Let anchor_node_output be its sole node.

7. anchor node_output and removed node must match on the 1ink field. In other
words, they must both link to the same key.

 Verify immutable data:

8. anchor node_input must match anchor_node_output on address, value, and da-
tum except for the 1ink field.

A.1.9 Key-ordered linked list

The key-ordered linked list data structure replaces the unsafe Append rule of the key-unordered
linked list with the safe Insert rule. It re-uses the rest of the key-unordered linked list rules, as
these rules cannot cause a key-ordered list to become key-unordered. It enforces the following
properties:

1. The root node exists continuously until the list is deinitialized.
2. Each node has a unique key.
3. Each key has only one node linking to it.

4. Traversal through the list is deterministic and follows key-ascending order.
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State transition rules

Init. Same as Init for key-unordered lists.

Offchain code for the list-initialization transaction MUST send the root node to
the list’s spending validator. Otherwise, the linked list can be corrupted.

Deinit. Same as Deinit for key-unordered lists.
Prepend (safe). Same as Prepend for key-unordered lists, but with an additional condition:

* key_to_prepend must not be a member of the list before the transaction, as witnessed
by anchor node_input.

is_not_-member(key_to_prepend, anchor_node_input)
The above condition enforces key uniqueness and order in the list, making this version of
Prepend safe.
Append (safe). Same as Append for key-unordered lists, but with an additional condition:

* key_to_append must not be a member of the list before the transaction, as witnessed
by anchor node_input.

is_.not_-member(key_to_append, anchor_node_input)
The above condition enforces key uniqueness and order in the list, making this version of
Append safe.
Insert. Insert a node into the list. Grouped conditions:
¢ Verify mint:
1. Let key_to_insert be the key being inserted.

2. The transaction’s sole effect on the list is to add key_to_insert.

key_added(key_to_insert, node_cs, node_mint)

* Verify inputs:
3. node_inputs must be a singleton. Let anchor node_input be its sole node.

4. key_to_insert must notbe amember of the list before the transaction, as witnessed
by anchor _node_input.

is_not_member(key_to_insert, anchor_node_input)

* Verify outputs:

5. node_outputs must have exactly two nodes:
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— inserted_node
— anchor_node_output

6. key_to_insert must be a member of the list after the transaction, as witnessed by
inserted_node.
is_member(key_to_insert, inserted_node)

7. anchor node_output must link to key_to_insert.

8. anchor node_input and inserted node must match on the link field. In other
words, they must both link to the same key.

9. inserted node must not contain any other non-ADA tokens.
* Verify immutable data:

10. anchor node_input must match anchor node_output on address, value, and da-
tum except for the 1ink field.

11. inserted node must match anchor node_output on address.

Unlike the Append rule, the Insert rule is safe because it enforces key uniqueness and key
order in the list:

* Key uniqueness is achieved by the inserted key’s pre-transaction non-membership.

» Key order is achieved by requiring both anchor node_input and inserted node to
link to the same key. The key non-membership condition implies that this common
linked key is higher than key_to_insert, which means that inserted _node complies
with the key order.

Remove. Same as Remove for key-unordered lists.

A.1.10 Instantiate a linked list in an application

An application that uses a linked list should ensure that it uses the appropriate state transition rules
when creating/destroying node utxos of the list or otherwise modifying the key or 1ink field value
of any nodes. The application can attach additional rules that constrain the circumstances under
which it allows list state transitions based on the list subcontext or the full transaction context.
Moreover, the application has complete and exclusive control over the app-specific data field of list
nodes, for which it also defines the data type.

As a general good practice, applications should limit the number of different non-node tokens
and the size of app-specific data placed into node utxo when new nodes are inserted and when
app-specific data is modified. This avoids token dust and large data attacks that could result in
deadlock when certain list operations cannot fit within transactions’ compute, memory, or space
constraints.

Midgard uses linked lists throughout its onchain architecture:
* Registered operators (Section 3.2.2)
+ Active operators (Section 3.2.3)
* Retired operators (Section 3.2.4)
* State queue (Section 3.4)
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A.1.11 Different data in root node

An application that needs to store different data in the root node than in non-root nodes of a list
can use an app-specific type with multiple constructors (i.e., a sum type) in the data field of the
list’s NodeDatum.

MyNodeDatum := NodeDatum(MyAppData)
MyAppData := Root(MyRootData) | Node(MyNodeData)

The application’s onchain code should ensure that root and non-root nodes always use their respec-
tive constructors.

A.1.12 Parallel insertions in key-ordered lists

For keys randomly sampled from an approximately uniform distribution (e.g., cryptographic public
keys for wallets), insertion/removal from a key-ordered linked list is parallel to a degree proportional
to the list’s size, with parallelism increasing as the list grows.

An application may expect highly parallel traffic (e.g., from simultaneous interactions of inde-
pendent users) before its list grows from its initially small size. This can be alleviated by using
“separator” nodes in the list, which boost the list’s parallelism by virtually occupying specific keys.
Ideally, separators should be evenly spaced throughout the key space of the list.

MyNodeDatum := NodeDatum(MyAppDataWithSeps)
MyAppDataWithSeps := Root(MyRootData) | Node(MyNodeData) | Separator

Suppose the application needs to insert a node at a key occupied by a separator node. In that case,
it will instead modify the node contents (see Section A.1.3) of the separator node to the intended
data field value of the inserted node. Otherwise, node insertion works as usual.

The application can insert or remove separators as needed during the lifecycle of the list to regulate
its parallelism.
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A.2 Single-threaded state machine

A.2.1 Utxo representation

Each single-threaded state machine’s current state is represented in the blockchain ledger as a
single utxo:

* The spending validator of the utxo defines the possible transitions out of the current state.

» The utxo value contains a thread token corresponding to the state machine.

* The datum contains the output that the machine emitted upon entering the current state.
Each state transition of the state machine is executed via a separate blockchain transaction:

+ The state machine’s thread token must be unique within the transaction context.

» The before-state is represented by the transaction input that contains the thread token.

The after-state is represented by the transaction output that contains the thread token.

* The state transition’s input is represented by the redeemer provided to the before-state’s
spending validator. If the spending validator defines several state transitions, the redeemer
selects one for the transaction.

A.2.2 Minting policy

The thread token’s minting policy defines the state machine’s initial states, initialization procedure,
final states, and termination procedure. It also implicitly defines the state machine’s subgraph of
reachable states, as each initial state’s spending validator defines the transitions out of that state
and, inductively, all further transitions out of the resulting states. Redeemers:

Initialize. Mint the thread token and send it to the spending validator address of one of the state
machine’s initial states. This redeemer receives an initial input that selects the initial state
and provides additional information that can be referenced in subsequent state transitions.

The thread token’s name should indicate the selected initial state and include a hash of the
reference information provided in the initial input. If the state machine is deterministic, its
thread token name identifies its unique path from initialization to the current state.

Finalize. Terminate the state machine normally if it is in one of the final states. Burn the thread
token and (if needed) perform cleanup actions that are universally needed when terminating
normally from any final state.

Cancel. Terminate the state machine exceptionally from any state. Burn the thread token and (if
needed) perform cleanup actions that are universally needed when terminating exceptionally
from any state.

3This avoids double-satisfaction issues during onchain validation of state transitions, as any transition’s before and
after states can be uniquely identified in any transaction. However, the state machine’s thread token does not need to be
globally unique across the blockchain ledger — it may be desirable to run several machines simultaneously, evolving
their states in independent transaction chains.
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A.2.3 Spending validators

If the state machine is non-deterministic, some of its spending validators define multiple possible
transitions out of some states. The redeemers provided to these spending validators select the state
transitions out of those states. Furthermore, the redeemers may provide additional arguments
so that the spending validators have the context to decide whether to allow the selected state
transitions.

Each spending validator is custom-written to express the specific logic of the possible transitions
out of its state. For each of these transitions, the spending validator must include a condition that
verifies the transformation of the input state into the corresponding output state:

verify_transition;; : (Input;, Output;, ..Args;) — Bool
verify_transition;; (i, o, ..args) = (transitionij(i, .args) = o)

transition;; : (Input;, ..Argsj) — Output;

A.2.4 Compilation

Each spending validator can be either statically or dynamically parametrized on the spending
validators into which its outbound state transitions lead.

 Static parametrization is preferred for state transitions that are expected to occur more
frequently in typical executions of the state machine. A fancy way of expressing this is that
state transitions should be statically parametrized along the maximally weighted acyclic
subgraph of the state graph.

* Dynamic parametrization should be used for all other state transitions because statically
parametrizing them would cause circular compilation dependencies on more preferred state
transitions.

Dynamic parametrization means that the spending validator requires a reference input that indi-
cates the addresses of the spending validators on which it dynamically depends. This reference
input is crucial for the integrity of the state machine’s state graph, so secure governance mechanisms
should control its creation/modification.

A.2.5 Example

Consider a simplified model of the git pull-request (PR) workflow, with the following states:

Draft (initial state). The drafter is implementing a feature or bug fix in a repository branch.
Transitions:

Update. The drafter updates the branch by adding some git commits. Next state: Draft.

Request review. The drafter requests a review for the branch. Next state: Testing.
Testing. The test suite is executing. Transitions:

Fail. The branch fails its test suite. Next state: Draft.

Pass. The branch passes its test suite. Next state: Review.
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Figure A.2.1: State diagram for a simplified git PR workflow.
Review. The reviewer is deciding whether the branch should merge into the main branch.
Transitions:

Approve. The reviewer approves the branch to be merged into the repository’s main
branch. Next state: Merged.

Changes. The reviewer requests some changes to the branch. Next state: Changes re-
quested.

Changes requested. The drafter is considering the reviewer’s feedback. Transitions:

Respond. The drafter responds to the reviewer, arguing that changes are not required.
Next state: Review.

Accept. The drafter accepts the reviewer’s change requests. Next state: Draft.
Approved (final state). The branch is merged into the main branch. Transitions:

Merge. The state machine terminates normally from the final state. The branch is merged
into the main branch and then deleted.

The onchain state machine representation of the above git PR model uses one minting policy and
five spending validators. The minting policy:

» Defines Draft as the initial state.

Assigns the state machine a token name corresponding to the commit hash of the base branch
of the PR.*

* Defines Merged as the final state.

Updates the state of the main branch when the PR branch is merged.

The spending validators define the transitions out of their corresponding states. The state datum
types include the PR’s current commit hash and other information relevant to their outbound
transitions. For example, the spending validator for the Draft state has redeemers to validate two
state transitions:

Update. Go to the Draft state. Update the PR commit hash and resolve any accepted change
requests that the update addresses.

“In this simplified model, the base branch cannot be changed for a PR.
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Request review. Go to the Testing state. Ensure that no accepted change requests remain.

We can also add a Cancel redeemer to every spending validator and the minting policy. In the git
PR workflow, this state transition would reflect the fact that a PR can be closed at any time. Some

additional logic may be needed in each of these redeemers to properly dispose of the PR after it is
closed.
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Appendix B

Midgard L1 transactions

This chapter specifies the L1 transactions that interact with Midgard’s consensus protocol smart
contracts. Whereas the onchain smart contract are specified in a modular way, where each validator
is only concerned with its own validity conditions, the transactions specified in this chapter often
interact with several of the onchain validators and must satisfy all of their conditions. Thus, the
offchain code can be seen as the integration layer for the onchain code.
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Figure B.0.1: Example transaction diagram.

As illustrated in the example diagram (Figure B.0.1), interpret our transaction diagrams as follows:
* Transactions are sharp-corner rectangles.
* Spent inputs are rounded-corner rectangles with outgoing arrows to transactions.
* Reference inputs are rounded-corner rectangles with dashed outgoing arrows to transactions.

* Outputs are rounded-corner rectangles with incoming arrows from transactions.
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+ Staking account are ellipses with incoming arrows from transactions if they’re being registered
and outgoing arrows to transactions if they’re being de-registered or withdrawn from.

* Occasional inputs/outputs are rounded-corner rectangles with dotted borders. This indicates
that these inputs/outputs may sometimes be present in transactions, but may be absent in
other times.

* Spending redeemers label arrows from inputs to transactions.

* Burning redeemers label arrows from inputs to transactions, when those inputs contain
tokens to be burned by the transactions.

* Minting redeemers label arrows from transactions to outputs, when those outputs contain
tokens minted by the transactions.

* Redeemer labels may be omitted when scripts have only one possible redeemer.

B.1 Initialization

registered active
operators operators retired
/ operators
Init Init
Inlt
Midgard instance /
nonce utxo \

\.

Init

Init / —
N————
Midgard - Int queue

\In:t

\\ T, [ settlement

i I, Init\‘ —
fraud £ escape

ERES

Figure B.1.1: Initialize Midgard.

Initialize a Midgard instance with a single transaction that sets up all the onchain data structures
required for Midgard’s smart-contract-based consensus protocol. This transaction (Figure B.1.1):

1. Spends a nonce utxo to uniquely parametrize' and authorize the initialization? of the Midgard
instance.

2. Produces the root nodes of the initially empty registered, active, and retired operator lists.

3. Produces the root nodes of the initially empty state and settlement queues.

1A Midgard instance’s hub oracle minting policy is parametrized on the nonce utxo spent in the initialization transac-
tion, and all minting policies of the Midgard instance are parametrized on the hub oracle minting policy.

ZFor example, if the nonce utxo is spent from a native script address, then initializing a Midgard instance parametrized
by that nonce utxo must satisfy the signature and timing requirements of the native script.
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4. Produces the scheduler, escape hatch, fraud proof catalogue, and hub oracle singleton utxos.
5. Attaches the signatures necessary to spend the nonce utxo.

Correctness is enforced by the hub oracle minting policy’s Init redeemer (Section 3.8.1).

B.2 Operator management

Midgard has several transactions that manage operators by interacting with the data structures of
the operator directory.

~

registered operator registereol operator

parent node parent node
\_
I registered opemtor]
hub oracle new node
S~<o - Register —v
S~a Operator
=~ ~b Reg;ster /(Prepev\o( node)
Operator

ADA bond source for / \
new registered operator change output to

new registered operator

Figure B.2.1: Register an operator.

Register a new operator via a transaction that (Figure B.2.1):
1. Prepends a new operator node to the registered operators list.
2. Places a sufficient ADA bond into the new operator’s node.
3. Attaches the operator’s signature to the transaction.

Correctness is enforced by the registered operators minting policy’s Register Operator redeemer
(Section 3.2.2).

registered operator registered operator
node N ADA bond refund
Deregister

Operator
(ra»«ove V\ode)

Deregister

Operator
[registereol operator]/ \ [registered operator]

parent node parent node

Figure B.2.2: De-register an operator.

De-register an operator via a transaction that (Figure B.2.2):
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1. Removes the operator’s node from the registered operator’s list.
2. Refunds the ADA bond to the operator.
3. Attaches the operator’s signature to the transaction.

Correctness is enforced by the registered operators minting policy’s Deregister Operator redeemer
(Section 3.2.2).
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Figure B.2.3: Remove and slash a duplicate registered operator.

If the same operator key is simultaneously present in a registered operators node and in another
node of the registered, active, or retired operators lists, then it can be removed via a transaction
that (Figure B.2.3):

1. Removes the duplicate node from the registered operators list

2. Slashes the duplicate node’s operator ADA bond, allocating part of it (slashing penalty
param) to the transaction’s fee and allowing the transaction submitter to claim the rest as the
fraud prover reward.

3. References the same operator key being used in another list node (registered/active/retired)
to justify removing and slashing that operator’s duplicate node.

Correctness is enforced by the registered operators minting policy’s Remove Duplicate Slash Bond
redeemer (Section 3.2.2).
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Figure B.2.4: Activate a registered operator.

Activate an operator via a transaction that (Figure B.2.4):
1. Removes the operator’s node from the registered operators list.
2. Inserts a node for the operator in the active operators list.

3. Transfers the operator’s ADA bond from the removed registered operator node to the inserted
active operators node.

Correctness is jointly enforced by these script redeemers:
 Activate Operator of the registered operators minting policy (Section 3.2.2).

* Activate Operator of the active operators minting policy (Section 3.2.3).

active operator / retired operator
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o
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retired operator parent node
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Figure B.2.5: Retire an active operator.

Retire an operator via a transaction that (Figure B.2.5):
1. Removes the operator’s node from the active operators list.

2. Inserts a node for the operator in the retired operators list.
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3. Transfers the operator’s ADA bond from the removed active operator node to the inserted
retired operator node.

4. Attaches the operator’s signature to the transaction.
Correctness is jointly enforced by these script redeemers:
* Retire Operator of the active operators minting policy (Section 3.2.3).

* Retire Operator of the retired operators minting policy (Section 3.2.4).

retired operator ADA bond
[ noo'Pe ] \ e / [ reFunA
Operator
Bond
(remove node)\‘ Recover
Operator
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[ retired operator ]/’ \[ retired operator ]

Figure B.2.6: Recover a retired operator’s bond.

After all of a retired operator’s block headers (in the state queue) and resolution claims (in the
settlement queue) have matured, the operator can recover his ADA bond via a transaction that
(Figure B.2.6):

1. Removes the operator’s node from the retired operators list.
2. Refunds the operator’s ADA bond to the operator.
3. Attaches the operator’s signature to the transaction.

Correctness is enforced by the retired operators minting policy’s Recover Operator Bond redeemer
(Section 3.2.4).

B.3 Scheduler

[ scheduler ] \A 4 / [ scheduler ]
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Figure B.3.1: Advance the scheduler to the next operator.

107
Branch: (None) @ 8799ca9 « Commit date: 2025-10-22




Advance the scheduler via transaction that (Figure B.3.1):
1. Updates the scheduler’s datum to start the next shift and assign it to a new operator.

2. References an active operator node that proves that the newly assigned operator follows the
previously assigned operator in key-descending order of the active operators list.

Correctness is enforced by the scheduler spending validator’s Advance redeemer (Section 3.3.3).
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Figure B.3.2: Rewind the scheduler to the first operator.

Rewind the scheduler via a transaction that (Figure B.3.2):
1. Updates the scheduler’s datum to the start the next shift and assign it to a new operator.

2. References the active operators’ root and last nodes to prove that the previously assigned
operator was at the end and the newly assigned operator is at the beginning of the key-
descending order of the active operators list.

Correctness is enforced by the scheduler spending validator’s Rewind redeemer (Section 3.3.3).

B.4 State queue
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Figure B.4.1: Commit a block header to the state queue.
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Commit a new block header to the state queue via a transaction that (Figure B.4.1):
1. Appends a new node containing the block header to the state queue.

2. Updates the operator’s bond-unlock time to the future time when the new block header will
mature.

3. Attaches the operator’s signature to the transaction.

4. References the scheduler to verify that the operator has the right to commit a block during
the current shift.

Correctness is jointly enforced by these script redeemers:
* Commit Block Header of the state queue minting policy (Section 3.4.2).

« Update Bond Hold New State of the active operators spending validator (Section 3.2.3).
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Figure B.4.2: Remove a fraudulent block header and slash its operator.

Remove a fraudulent block header from the state queue via a transaction that (Figure B.4.2):
1. References a fraud proof to justify removing the block header and slashing its operator.
2. Removes the fraudulent block header’s node from the state queue.

3. Removes the dishonest operator’s node from the active operators or retired operators list
(depending on where the operator’s node resides).

4. Slashes the dishonest operator’s ADA bond, sending part of it (fraud_prover_reward param)
to the fraud prover and paying the rest (slashing penalty) as transaction fees.

Correctness is jointly enforced by these script redeemers:

* Remove Fraudulent Block Header of the state queue minting policy (Section 3.4.2).
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* Remove Operator Bad State of the active/retired operators minting policy (Section 3.2.3,
Section 3.2.4).

state queue
V\Ode
(merged block) \
Merge to
Confirmed State state queue
(remove node) root node

(new confirmed state)
Merge Block
to

Confirmed —_— Append

state queue
root node

(confirmed state)

)

_________ State Sett‘e‘"e“t\’  settlement queue
Node E new V\Ode
settlement queue (settlement queue inputs/outputs used ! settlement queue
parent node i and only it merged block contains . parent node

e eeeeeeeeaeeaaan . any user events)

Figure B.4.3: Merge a mature block header to the confirmed state.

Merge a matured block header to the confirmed state via a transaction that (Figure B.4.3):
1. Removes the block header’s node from the state queue.

2. Updates the state queue’s root node datum (i.e. Midgard’s confirmed state) to the reflect the
information contained in the block header.

3. If the block header contains any L1 user events (deposits, transaction orders, or withdrawal
orders) append a new node containing the same user events to the settlement queue.

Correctness is jointly enforced by these script redeemers:
* Merge to Confirmed State of the state queue minting policy (Section 3.4.2).

* Append Settlement Node of the settlement queue minting policy (Section 3.6.2).
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Figure B.5.1: Attach an optimistic resolution claim to a settlement node.
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Attach a claim that all user events in a settlement node have been resolved, via a transaction that
(Figure B.5.1):

1. Spends a settlement node without a resolution claim and updates its datum to attach a
resolution claim. The claim must indicate the operator attaching the claim and the future
time when the claim will mature (must be set according to maturity_duration param).

2. Spends the operator’s node (must be active) and updates its datum’s bond unlock time to the
resolution claim’s maturity time.

3. Attaches the operator’s signature to the transaction.

4. References the scheduler to demonstrate that the current shift is assigned to the operator
attaching the resolution claim.

Correctness is jointly enforced by these script redeemers:
* Attach Resolution Claim of the settlement queue spending validator (Section 3.6.3).

* Update Bond Hold New Settlement of the active operators spending validator (Section 3.2.3).
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Figure B.5.2: Disprove an optimistic resolution claim of a settlement node.

Disprove a settlement node’s resolution claim via a transaction that (Figure B.5.2):

1. Spends a settlement node with a resolution claim and updates it to remove the resolution
claim.

2. Removes the resolution claim’s operator node from the active operators or retired operators
list (depending on where the operator’s node resides).

3. Slashes the dishonest operator’s ADA bond, sending part of it (fraud_prover_reward param)
to the transaction’s submitter and paying the rest (slashing penalty) as transaction fees.

4. References an L1 user event as a counter-example to the resolution claim—the event is
included in the settlement node but has not yet been resolved.
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Correctness is jointly enforced by these script redeemers:
* Disprove Resolution Claim of the settlement queue spending validator (Section 3.6.3).

* Remove Operator Bad Settlement of the active operators or retired operators minting policy
(Section 3.2.3, Section 3.2.4).
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Node
settlement / \ settlememt
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Figure B.5.3: Resolve a settlement node after its resolution claim matures.

Resolve a settlement node via a transaction that (Figure B.5.3):

1. Removes a settlement queue node that contains a resolution claim with a maturity time
preceding the transaction’s time-validity lower bound.

2. Attaches the signature of the resolution claim’s operator.

Correctness is enforced by the Resolve Settlement Node script redeemer of the settlement queue’s
minting policy (Section 3.6.2).

B.6 User events
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Figure B.6.1: Create an L1 deposit for Midgard.

Create a new deposit for Midgard via a transaction that (Figure B.6.1):
1. Spends a nonce input to uniquely parametrize the deposit.
2. Produces a deposit utxo containing the user’s deposited funds and instructions.

3. Registers a staking credential to witness the existence of the deposit.
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Correctness is jointly enforced by these script redeemers:
» Authenticate Deposit of the deposit minting policy (Section 2.1.1).

 Register Staking Credential of the witness staking script (Section 2.5.1).
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Figure B.6.2: Create a transaction order for Midgard.

Create a new transaction order for Midgard via a transaction that (Figure B.6.2):
1. Spends a nonce input to uniquely parametrize the transaction order.
2. Produces a transaction order utxo containing the user’s L2 transaction.
3. Registers a staking credential to witness the existence of the transaction order.
Correctness is jointly enforced by these script redeemers:
» Authenticate Transaction Order of the transaction order minting policy (Section 2.3.1).

 Register Staking Credential of the witness staking script (Section 2.5.1).
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Figure B.6.3: Create a withdrawal order for Midgard.

Create a new withdrawal order for Midgard via a transaction that (Figure B.6.2):
1. Spends a nonce input to uniquely parametrize the withdrawal order.
2. Produces a withdrawal order utxo indicating the L2 utxo to be withdrawn.

3. Registers a staking credential to witness the existence of the withdrawal order.
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Correctness is jointly enforced by these script redeemers:
* Authenticate Withdrawal Order of the withdrawal order minting policy (Section 2.3.1).

* Register Staking Credential of the witness staking script (Section 2.5.1).
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Figure B.6.4: Conclude a transaction order after it has been confirmed.

Conclude a confirmed transaction order via a transaction that (Figure B.6.4):
1. Spends a transaction order and burns its NFT.
2. De-registers the staking credential witnessing the transaction order.

3. References a settlement node that includes the transaction order to prove that it has been
confirmed.

Correctness is jointly enforced by these script redeemers:
* Conclude of the transaction order spending validator (Section 2.3.2).
* Burn Transaction Order NFT of the transaction order minting policy (Section 2.3.1).

* Mint or Burn of the witness staking script (Section 2.5.1).

B.7 Reserve management

Burn Deposit NFT

deposit ~_ reserve utxo
Transfer to Reserve / /

Absorb

Deregister .
staking — Deposit

credential - v
-

deposit witness
(Staking account)

[ settlement node ] -7 -

-

Figure B.7.1: Absorb a deposit into the Midgard reserves after it has been confirmed.
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Absorb a confirmed deposit into Midgard reserves via a transaction that (Figure B.7.1):
1. Spends a deposit and burns its deposit NFT.
2. De-registers the staking credential witnessing the deposit.
3. References a settlement node that includes the deposit to prove that it has been confirmed.
Correctness is jointly enforced by these script redeemers:
* Transfer to Reserve of the deposit spending validator (Section 2.1.2).
* Burn Deposit NFt of the deposit minting policy (Section 2.1.1).

* Mint or Burn of the witness staking script (Section 2.5.1).
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Figure B.7.2: Transform a confirmed withdrawal order into a payout accumulator.

Transform a confirmed withdrawal into a payout accumulator via a transaction that (Figure B.7.2):
1. Spends the withdrawal order and burns its NFT.

2. Produces a payout accumulator with 12 value, 11 _address, and 11 _datum datum fields
matching those of the withdrawal order.

3. De-registers the staking credential witnessing the withdrawal order.
4. References a settlement node that includes the withdrawal to prove that it has been confirmed.
Correctness is jointly enforced by these script redeemers:
* Initialize Payout Accumulator of the withdrawal order spending validator (Section 2.4.2).
* Burn Withdrawal NFT of the withdrawal order minting policy (Section 2.4.1).

* Burn or Mint of the witness staking script (Section 2.5.1).
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Figure B.7.3: Collect funds from Midgard reserves into a payout accumulator.

Collect funds from Midgard reserves into a payout accumulator via a transaction that (Figure B.7.3):
1. Spends a payout accumulator.
2. Spends a reserve utxo.

3. Produces a payout accumulator output that combines the funds from the payout accumulator
input with as many funds from the reserve utxo input as possible, up to the limit defined in
the payout accumulator’s 12_value datum field.

4. Produces a reserve utxo if needed to hold the remainder of the funds.
Correctness is jointly enforced by these script redeemers:
* Collect Reserve Funds of the payout accumulator spending validator (??)

* The sole redeemer of the reserve spending validator (Section 3.7.1).
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Figure B.7.4: Conclude a payout from Midgard.

Conclude a payout from Midgard via a transaction that (Figure B.7.4):

1. Spends a payout accumulator with funds matching or exceeding the amount defined in its
12 _value datum field.

2. Produces an output at the address and datum defined by the payout accumulator’s 11_address
and 11 datum datum fields.

Correctness is jointly enforced by these script redeemers:
» Complete Payout of the payout accumulator spending validator (??).

* Burn of the payout accumulator minting policy (??).
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B.8 Fraud proofs
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Figure B.8.1: Initialize the verification of a fraud proof.

Initialize the verification of a fraud proof via a transaction that (Figure B.8.1):
1. References an allegedly fraudulent node in the state queue.

2. References the fraud proof catalogue to select the fraud proof verification procedure that
will demonstrate the allegation.

3. Mints a computation thread token and sends it to the first step spending validator of the
selected fraud proof verification procedure.

Correctness is enforced by the Init redeemer of the fraud proof computation thread minting policy
(Section 4.3.1).
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(burn thread token)
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Figure B.8.2: Cancel the verification of a fraud proof.

Cancel the verification of a fraud proof via a transaction that (Figure B.8.2):
1. Spends a single fraud proof computation thread utxo.
2. Burns the computation thread token
3. Refunds the ADA from the computation thread utxo to the fraud prover.

Correctness is enforced by the Cancel redeemer of the fraud proof minting policy (Section 4.3.1).
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Figure B.8.3: Perform a verification step of a fraud proof.

Perform a single verification step of a fraud proof via a transaction that (Figure B.8.3):

1. Spends a single fraud proof computation thread utxo, performing the verification step defined
in the utxo’s spending validator.

2. Reproduces the fraud proof computation thread utxo as a continuing output sent to the next
step’s spending validator address.

3. If required by the verification step, references the allegedly fraudulent state queue node.

4. If required by the verification step, withdraws ADA from a designated account that triggers
Midgard’s Merkle proof helper script.

Correctness is jointly enforced by these script redeemers:
* Continue of the fraud proof’s spending validator (Section 4.3.2).

¢ (If needed) Merkle Inclusion/Exclusion Proof of the helper script staking validator (see the
Aiken Merkle Patricia Forestry repository on Github).
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Figure B.8.4: Conclude the verification of a fraud proof by performing its final step.

Perform the final verification step of a fraud proof via a transaction that (Figure B.8.3):
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1. Spends a single fraud proof computation thread utxo, performing the verification step defined
in the utxo’s spending validator.

2. Burns the computation thread token and mints the corresponding fraud proof token.
3. If required by the verification step, references the allegedly fraudulent state queue node.

4. If required by the verification step, withdraws ADA from a designated account that triggers
Midgard’s Merkle proof helper script.

Correctness is jointly enforced by these script redeemers:
* Mint of the fraud proof minting policy (Section 4.2.1).
* Conclude of the fraud proof’s spending validator (Section 4.3.2).

* (If needed) Merkle Inclusion/Exclusion Proof of the helper script staking validator (see the
Aiken Merkle Patricia Forestry repository on Github).
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Appendix C

Design and implementation
considerations

This appendix chapter describes some considerations that we have taken into account while
designing and implementing the Midgard protocol.

C.1 Protocol invariants

Midgard’s design must ensure that the following protocol invariants always hold. Auditors of the
Midgard protocol are strongly encouraged to consider these invariants in their analysis.

Block merging order. Each valid block is merged to the confirmed state before its descendants.

If this invariant fails to hold, a block previously considered valid may become invalid because
the confirmed state may unexpectedly change due to an out-of-order block being merged.
This would significantly worsen the waiting time for L2 transaction confirmation, as users
would not be able to rely on a block’s validity at commitment time to hold during its maturity
period.

Midgard enforces this invariant by using the linked list data structure in the state queue, which
ensures that blocks are appended to the end of the queue and merged from the beginning of
the queue. See Section 3.4.

Valid blocks. Every valid block can eventually be merged to the confirmed state.

If this invariant fails to hold, Midgard’s confirmed state may become stuck because some valid
block cannot be merged and cannot be removed from the state queue for fraud. This would
be catastrophic because there would be no way to retrieve any funds from Midgard other
than withdrawals that have already been confirmed by previous blocks but not yet paid out.

Midgard enforces this invariant by ensuring that the Merge to Confirmed State state queue
redeemer always works for blocks that are mature with no unmerged predecessors left in the
state queue. Furthermore, Midgard ensures that onchain verification scripts for fraud proofs
can never succeed when targeting valid blocks. See Section 3.4 and Section 4.1.
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Invalid blocks. Every invalid block can be invalidated by an L1-verified fraud proof before its
maturity period elapses, allowing it to be removed from the state queue.

Suppose this invariant fails to hold for any violation type. In that case, dishonest operators
can exploit the violation with impunity, and no one can prevent the invalid state from being
merged to the confirmed state. Depending on the violation type, dishonest operators may use
various exploits to steal user funds.

Midgard enforces this invariant by defining an onchain verification script for every possible
violation of Midgard’s ledger rules. Furthermore, Midgard ensures that these scripts can
always succeed when targeting invalid blocks containing their corresponding violation type.
See Section 4.1, Section 4.3, and Chapter 5.

Registered and active operators. Anyone with a sufficient ADA bond can eventually become
an active operator, and every active operator will eventually get a shift to commit blocks.

If this invariant fails to hold, Midgard may fail to attract enough active operators to ensure
robust and continuous block production. If all active operators cease participating in the
Midgard protocol and no newcomers can become active operators or obtain a shift, then
Midgard block production would cease.

Midgard enforces this invariant by using the linked list data structures to assign shifts to all
active operators in a round-robin fashion. Furthermore, it uses another linked list to register
new operators and ensures that they can always activate after a prescribed wait duration.
See Section 3.2.3, Section 3.2.4, and Section 3.3.

Operator bond. No operator can retrieve their bond before the maturity period elapses for
their most recent block, and every operator can do so afterward.

If the first clause of this invariant fails to hold, then a dishonest operator can prevent themself
from being slashed and the fraud prover from being rewarded when a fraud proof removes
the operator’s fraudulent block from the state queue. This would weaken Midgard’s incentives
by reducing risk for dishonest operators and eliminating the reward for honest watchers, so
that only altruistic watchers and those directly hurt by the fraud would be incentivized to
stop it.

If the second clause of this invariant fails to hold, then people would hesitate to become
operators due to the risk that their bond might get stuck in Midgard.

Midgard enforces this invariant through the operator directory, which tracks the maturity
period of the latest block committed by each operator. It holds the operator bonds during
these periods and allows them to be retrieved afterward. See Section 3.2.

Censorship protection. If block production continues, operators cannot censor deposits, with-
drawal orders, and transaction orders from being confirmed.

If this invariant fails to hold, then some user funds may get stranded in Midgard because
operators would prevent them from interacting with Midgard’s state.

Midgard enforces this by assigning an inclusion time to every L1 user event (i.e.deposits,
withdrawal orders, and transaction orders) and assigning an event interval to every block.
Any block can be removed as invalid if it does not include an L1 user event with an inclusion
time that falls within the block’s event interval. The event intervals are non-overlapping
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between blocks and have no gaps. This means that every L1 user event must eventually be
included in a valid block unless block production halts.

Meanwhile, the "registered and active operators” invariant and the escape hatch mechanism
(see Section 3.5) mitigate the possibility that block production stops indefinitely. Thus, Midgard
user events are protected from censorship.
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C.2 Protocol parameters

C.2.1 Midgard consensus protocol parameters

The following parameters must be set before Midgard is initialized. Their actual values will be
determined once Midgard is fully implemented, tested, and benchmarks. However, for the reader’s
intuition, we provide approximate values that we expect for the parameters:

Parameter Definition Expected approx. value
event_wait_duration Section 2.1 2—4 minutes
fraud prover_reward Section 3.2 30%-50% of the required bond parameter
maturity duration Section 3.4 3-7 days
registration duration Section 3.2 1 day
required_bond Section 3.2 50K-200K ADA
shift_duration Section 3.1 1 hour
slashing penalty Section 3.2  50%-70% of the required_bond parameter

Table C.1: Midgard consensus protocol parameters.

Midgard does not use the Ouroboros consensus protocol, so it does not need to set the associated
protocol parameters.

C.2.2 Midgard ledger parameters

Midgard’s L2 transactions transition its ledger similarly to Cardano’s ledger but with the exceptions
defined in Section 1.6.2. Consequently, Midgard uses the same ledger-associated protocol parameters
as Cardano but omits certain parameters as follows:

* No staking or governance parameters.

* No parameters for obsolete pre-Conway features.

C.2.3 Midgard fee structure

Midgard will collect fees from all L2 transactions, in a similar way to how fees are collected for
Cardano L1 transactions. Furthermore, Midgard may collect fees for processing deposits and
withdrawals, as these user events incur costs separate from L2 transactions. However, Midgard’s
fee parameters are expected to be orders of magnitude smaller than Cardano’s fee parameters.

Midgard’s L1 operating costs per block are fixed, regardless of the number and complexity of
transactions in the block. Midgard’s DA temporary storage costs per block are proportional to the
number and size of transactions in the block, but these variable costs are orders of magnitude
smaller than Cardano L1 storage costs. Midgard’s revenue per block is proportional to the number
and complexity of transactions in the block. Therefore, on a per-block basis, Midgard’s fee revenue
grows faster than its costs as the number of transactions in the block increases. This means that
Midgard can sustain much lower L2 transaction fees once it attains a certain average level of L2
activity.

The specific values of Midgard’s fee parameters will be determined before launch based on simula-
tions, benchmarks, and community feedback.
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C.2.4 Midgard network parameters

Technically, Midgard operator nodes do not need to communicate with each for consensus. Instead,
they participate in the consensus protocol by interacting with Midgard’s smart contracts on L1.

However, in practice, an offchain peer-to-peer gossip network between operators may help them
run things a bit more smoothly for users. If so, there may be associated protocol parameters to help
peers discover the network topology and communicate with other peers.
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C.3 Protocol security

C.3.1 Malicious majority stake attack

A majority stake attack can allow the adversary to degrade the Liveness and Finality security
properties of a blockchain protocol, if the adversary holds a sufficient percentage (e.g. 51%) of the
network’s primary resource (e.g. hashing power for Bitcoin, ADA for Cardano). In practical terms,
this attack can allow the adversary to revert recently confirmed transactions and extract value
from victims by preventing the reverted transactions from being restored to the ledger.

Midgard’s consensus protocol is implemented entirely via Cardano L1 smart contracts. This means
that an attack to revert any transaction that evolves the state of these L1 smart contract is as
difficult as an attack against Cardano’s finality security property, against which Cardano’s Ouroboros
consensus protocol is highly resistant. In simpler terms, Cardano’s full ADA supply on L1 is the
resource against which a majority stake attack must prevail to affect Midgard’s L2 ledger.

Furthermore, every L2 transaction in Midgard is only confirmed after two consensus transactions
occur on L1:

« First, the L2 transaction is included in a block header committed to Midgard’s state queue.

* Second, the block header is merged to Midgard’s confirmed state after waiting in the queue
for the maturity period.

Both of the above L1 transactions must be reverted to revert a confirmed L2 transaction in Midgard.
Due to the mandatory maturity period between the two L1 transactions, this amounts to a long-
range attack to fork Cardano’s blockchain before the maturity period began. However, according
to the Ouroboros consensus protocol, Cardano nodes will always reject any forks that diverge
from their local chain by more than 2160 blocks, which is approximately 12 hours (with very tight
confidence bounds). As Midgard’s maturity period protocol parameter will certainly be longer than
24 hours (see Section C.2), it will be impossible to revert both consensus transactions on L1 for a
confirmed L2 transaction on Midgard.

Suppose the adversary succeeds in an attack against Cardano’s finality property, reverting the
second consensus transaction for a Midgard L2 transaction. This reversion will restore the block
header to the beginning of the state queue, allowing it to be immediately re-merged to Midgard’s
confirmed state. Moreover, no conflicting block header can be merged to the confirmed state in its
place. Thus, the adversary’s attack has no practical effect other than slightly delaying the inevitable
confirmation.

Suppose the adversary reverts the first consensus transaction for a Midgard L2 transaction. This
reversion will remove the block header from the state queue. If the adversary is not colluding with
the current operator in Midgard, then the current operator will simply recommit the block header
to the state queue, nullifying any effects of the adversary’s attack. If the adversary is colluding with
the current operator, then the adversary’s attack is redundant—the same effect is achieved if the
current operator abuses its power to censor L2 transactions. However, Midgard has safeguards in
place against such abuse (see Section C.3.2).
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C.3.2 Operator abuse of power

Each operator has the exclusive privilege to commit blocks to the state queue and resolve nodes
in the settlement queue during their assigned shifts (see Section 3.1), the duration of which is
controlled by the shift_duration protocol parameter (see Section C.2). The current operator has
discretion over whether and when to commit blocks to the state queue and the contents of those
blocks. This discretion can be abused to censor L2 transactions, but Midgard’s consensus protocol
has safeguards in place against such abuse.

Midgard deposits and withdrawals are initiated via L1 smart contracts that assign definite inclusion
times to them. An operator block is invalid if it contains these inclusion times in its event interval but
fails to include the associated deposit or withdrawal events. This ensures that if operators continue
committing blocks to Midgard’s state queue, then they cannot ignore deposit and withdrawal events.

Midgard L2 transaction requests are typically submitted to operators via a publicly accessible API,
and they can be ignored by operators. However, any user can escalate his L2 transaction request by
posting a transaction order on L1. Similar to Midgard deposits and withdrawals, an L1 transaction
order is assigned an inclusion time that guarantees its inclusion in a subsequent valid block.

If Midgard operators stop committing blocks at all to the state queue, then the inclusion times on
their own cannot guarantee that deposits, withdrawals, and L2 transactions will be processed in a
timely manner. However, for this extreme case, Midgard’s consensus protocol includes the escape
hatch mechanism, which temporarily lowers the bond requirement for new operators. This makes
it easier for honest actors to become operators and restart block production. After the emergency
is over, the new operators must either retire or increase their ADA bond to the normal requirement
to stay as regular operators.

C.3.3 Replay attack

In a replay attack, the adversary repeats or delays a valid message to confuse the network and
achieve a malicious outcome.

Midgard’s entire consensus protocol is implemented as a set of smart contracts on Cardano L1 that
evolve via L1 transactions. Each of these L1 transactions must spend at least one utxo, which means
that Cardano’s ledger rule against double-spending utxos prevent these transactions from being
replayed.

However, Cardano’s ledger rules do not directly see the contents corresponding to any hashes in
the consensus protocol state on L1, such as the utxos, L2 transactions, deposits, and withdrawals in
a block header. Nonetheless, Midgard has comprehensive ledger rules against the various ways in
which utxos, L2 transactions, deposits, and withdrawals can be duplicated within a block or across
blocks. Any operator that commits a block header to the state queue that contravenes these ledger
rules forfeits his bond if the corresponding fraud proof is verified on L1 within the block’s maturity
period.

Another form of replay attack involves reusing the same confirmed deposit or withdrawal event
in the settlement queue to absorb more deposited funds than necessary into Midgard’s reserve or
release more funds than necessary from it for a withdrawal. Midgard prevents this by requiring an
L1 utxo to be created on L1 for every deposit and withdrawal, which must be spent whenever the
corresponding deposit is absorbed or withdrawal is paid out.
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